埃洛石
铀
吸附
海水
萃取(化学)
化学
核化学
化学工程
矿物学
材料科学
地质学
冶金
色谱法
有机化学
复合材料
工程类
海洋学
作者
Shilei Zhao,Yihui Yuan,Qiuhan Yu,Biye Niu,Jianhe Liao,Zhanhu Guo,Ning Wang
标识
DOI:10.1002/anie.201908762
摘要
By chemical cross-linking the amidoxime group onto dual-surfaces of natural ore materials, namely halloysite nanotubes (HNTs), an efficient adsorbent, AO-HNTs, is developed. AO-HNTs show high uranium adsorption capacity of 456.24 mg g-1 in 32 ppm uranium-spiked simulated seawater. In natural seawater, AO-HNTs reach the high uranium extraction capacity of 9.01 mg g-1 after 30 days' field test. The dual-surface amidoximated hollow nanotubular AO-HNTs exhibit more coordination active sites for uranium adsorption, which is attributed to the high and fast uranium adsorption capacity. Because of the stable natural ore structure, AO-HNTs also show long service life. Benefiting from the low cost of HNTs, the cost for uranium extraction from seawater is close to the uranium price in the spot uranium market, suggesting that AO-HNTs could be used for economical extraction of uranium from the oceans.
科研通智能强力驱动
Strongly Powered by AbleSci AI