Solvent-Induced Protein Precipitation for Drug Target Discovery on the Proteomic Scale

化学 药物发现 计算生物学 高通量筛选 药品 溶解 药物靶点 靶蛋白 蛋白质组学 小分子 化学生物学 生物化学 药理学 生物 基因
作者
Xiaolei Zhang,Qi Wang,Yanan Li,Chengfei Ruan,Shuyue Wang,Lianghai Hu,Mingliang Ye
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (1): 1363-1371 被引量:86
标识
DOI:10.1021/acs.analchem.9b04531
摘要

High-throughput drug discovery is highly dependent on the targets available to accelerate the process of candidates screening. Traditional chemical proteomics approaches for the screening of drug targets usually require the immobilization/modification of the drug molecules to pull down the interacting proteins. Recently, energetics-based proteomics methods provide an alternative way to study drug–protein interaction by using complex cell lysate directly without any modification of the drugs. In this study, we developed a novel energetics-based proteomics strategy, the solvent-induced protein precipitation (SIP) approach, to profile the interaction of drugs with their target proteins by using quantitative proteomics. The method is easy to use for any laboratory with the common chemical reagents of acetone, ethanol, and acetic acid. The SIP approach was able to identify the well-known protein targets of methotrexate, SNS-032, and a pan-kinase inhibitor of staurosporine in cell lysate. We further applied this approach to discover the off-targets of geldanamycin. Three known protein targets of the HSP90 family were successfully identified, and several potential off-targets including NADH dehydrogenase subunits NDUFV1 and NDUFAB1 were identified for the first time, and the NDUFV1 was validated by using Western blotting. In addition, this approach was capable of evaluating the affinity of the drug–target interaction. The data collectively proved that our approach provides a powerful platform for drug target discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ldkshifo完成签到,获得积分10
1秒前
彭于晏完成签到,获得积分10
1秒前
1秒前
XU发布了新的文献求助20
1秒前
伍六七完成签到,获得积分10
2秒前
2秒前
3秒前
YYY发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
不亦乐乎完成签到,获得积分10
3秒前
科研通AI5应助程风破浪采纳,获得10
4秒前
萌新完成签到,获得积分10
4秒前
yeploooot发布了新的文献求助10
5秒前
西瓜发布了新的文献求助10
5秒前
5秒前
小蘑菇应助风清扬采纳,获得10
6秒前
FashionBoy应助淡定怜南采纳,获得10
6秒前
不亦乐乎发布了新的文献求助10
6秒前
无谓发布了新的文献求助10
7秒前
海比天蓝发布了新的文献求助10
7秒前
细腻天蓝完成签到 ,获得积分10
7秒前
深情安青应助Jyy77采纳,获得10
7秒前
科研通AI2S应助WeiSS采纳,获得10
7秒前
CC完成签到 ,获得积分10
7秒前
jungle完成签到 ,获得积分10
8秒前
ding应助larychen采纳,获得10
8秒前
8秒前
Promise发布了新的文献求助10
8秒前
GGB完成签到,获得积分10
8秒前
感动梦寒发布了新的文献求助10
9秒前
海岸线发布了新的文献求助10
9秒前
keyancui完成签到,获得积分10
9秒前
小杨完成签到 ,获得积分10
9秒前
9秒前
9秒前
JDD完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
A Systemic-Functional Study of Language Choice in Singapore 550
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871797
求助须知:如何正确求助?哪些是违规求助? 4161888
关于积分的说明 12907391
捐赠科研通 3918237
什么是DOI,文献DOI怎么找? 2151195
邀请新用户注册赠送积分活动 1169656
关于科研通互助平台的介绍 1073438