正交基
小波
二叉树
小波包分解
数学
树(集合论)
基础(线性代数)
小波变换
滤波器(信号处理)
过滤器组
二进制数
离散小波变换
离散数学
网络数据包
计算机科学
算法
组合数学
人工智能
算术
计算机视觉
计算机网络
量子力学
物理
几何学
作者
A.K. Soman,P. P. Vaidyanathan
标识
DOI:10.1109/icassp.1992.226352
摘要
Binary tree-structured filter banks have been employed in the past to generate wavelet bases. The equivalence between binary paraunitary tree-structures and orthonormal wavelet bases is proven. It is known that a binary tree with paraunitary filters on each level generates a discrete time orthonormal wavelet basis. It is shown that every discrete-time orthonormal wavelet basis can be generated using paraunitary binary trees. Next, this analysis is extended to arbitrary tree structures such as those used for generating wavelet packets. It is shown that an arbitrary tree with paraunitary filers gives an orthonormal basis of wavelet packets. The strict converse is not true, but a weaker result is presented.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI