Pose estimation method for construction machine based on improved AlphaPose model

姿势 规范化(社会学) 计算机科学 人工智能 机器学习 机器视觉 软件 数据挖掘 社会学 人类学 程序设计语言
作者
Jiayue Zhao,Yunzhong Cao,Yuanzhi Xiang
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:31 (3): 976-996 被引量:23
标识
DOI:10.1108/ecam-05-2022-0476
摘要

Purpose The safety management of construction machines is of primary importance. Considering that traditional construction machine safety monitoring and evaluation methods cannot adapt to the complex construction environment, and the monitoring methods based on sensor equipment cost too much. This paper aims to introduce computer vision and deep learning technologies to propose the YOLOv5-FastPose (YFP) model to realize the pose estimation of construction machines by improving the AlphaPose human pose model. Design/methodology/approach This model introduced the object detection module YOLOv5m to improve the recognition accuracy for detecting construction machines. Meanwhile, to better capture the pose characteristics, the FastPose network optimized feature extraction was introduced into the Single-Machine Pose Estimation Module (SMPE) of AlphaPose. This study used Alberta Construction Image Dataset (ACID) and Construction Equipment Poses Dataset (CEPD) to establish the dataset of object detection and pose estimation of construction machines through data augmentation technology and Labelme image annotation software for training and testing the YFP model. Findings The experimental results show that the improved model YFP achieves an average normalization error (NE) of 12.94 × 10 – 3, an average Percentage of Correct Keypoints (PCK) of 98.48% and an average Area Under the PCK Curve (AUC) of 37.50 × 10 – 3. Compared with existing methods, this model has higher accuracy in the pose estimation of the construction machine. Originality/value This study extends and optimizes the human pose estimation model AlphaPose to make it suitable for construction machines, improving the performance of pose estimation for construction machines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风风风风发布了新的文献求助10
刚刚
djshao应助xxx采纳,获得10
刚刚
飞快的不愁完成签到,获得积分20
刚刚
1秒前
小猪完成签到,获得积分10
2秒前
2秒前
Y_Bin完成签到,获得积分10
2秒前
3秒前
wyc完成签到,获得积分10
3秒前
爆米花应助lockedcc采纳,获得10
3秒前
5秒前
桐桐应助QUPY采纳,获得10
6秒前
ZPQ完成签到,获得积分10
6秒前
可爱的函函应助Y_Bin采纳,获得10
7秒前
Atan完成签到,获得积分10
7秒前
8秒前
远扬完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Akim应助简w采纳,获得10
9秒前
英俊的铭应助简w采纳,获得10
9秒前
无花果应助简w采纳,获得10
9秒前
爆米花应助简w采纳,获得10
9秒前
李健的粉丝团团长应助简w采纳,获得10
9秒前
科目三应助简w采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
waitamoment完成签到,获得积分10
10秒前
11秒前
远扬发布了新的文献求助10
11秒前
无极微光应助李Li采纳,获得20
11秒前
yyy完成签到,获得积分10
11秒前
水123发布了新的文献求助10
12秒前
12秒前
背后初南完成签到,获得积分20
12秒前
ttt发布了新的文献求助10
12秒前
马荣发布了新的文献求助10
13秒前
光军完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266