In Vivo Laparoscopic Image De-smoking Dataset, Evaluation, and Beyond

计算机视觉 图像(数学) 人工智能 计算机科学
作者
Wenyao Xia,T.M. Peters,Victoria Y. Fan,Hamsini Sthanunathan,Olivia Qi,Elvis C. S. Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3584641
摘要

The development of effective algorithms for removing surgical smoke in laparoscopic surgery has been hindered by the absence of a paired dataset containing real smoky and smoke-free surgical scenes. As a result, existing de-smoking methods have been primarily based on synthetic datasets and non-reference image enhancement metrics, which fail to fully capture the complexity of in vivo surgical scenes. To address this gap, we present a novel paired dataset derived from laparoscopic surgical recordings by identifying video sequences with relatively stationary scenes where smoke emerges. Our approach includes a robust motion-tracking technique that compensates for involuntary patient movements, ensuring reliable pairing of smoky images and their corresponding smoke-free ground truths. From 132 laparoscopic prostatectomy recordings, we curated 41 video sequences, resulting in a dataset of 2000 smoky-to-smoke-free image pairs. From 45 cholecystectomy recordings, we extracted 68 video sequences, resulting in an additional dataset of 1000 image pairs. Using this unique dataset, we evaluated a representative selection of current de-smoking methods, confirming their effectiveness while also highlighting their limitations. Furthermore, we critically revisited the commonly used atmospheric scattering model, atmospheric colour assumptions, and the dark channel prior. Our analysis demonstrated that the traditional atmospheric scattering model with "gray smoke" assumption introduces significant residual errors in the green and blue channels, while the dark channel prior maintains a strong correlation with smoke intensity. These observations suggest that, while less effective for direct smoke separation, the dark channel prior has potential to serve as a useful attention map for deep learning-based de-smoking approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asdf发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
NexusExplorer应助mzrrong采纳,获得10
5秒前
小二郎应助XD824采纳,获得10
6秒前
星辰大海应助XD824采纳,获得10
6秒前
科研通AI6应助wang采纳,获得100
6秒前
万能图书馆应助XD824采纳,获得10
6秒前
7秒前
ANK应助111采纳,获得30
7秒前
WHW完成签到,获得积分10
8秒前
香蕉觅云应助YYH采纳,获得10
8秒前
一坞鱼完成签到,获得积分10
14秒前
ICEBLUE完成签到,获得积分10
14秒前
千陽完成签到 ,获得积分10
17秒前
changping应助钱俊采纳,获得10
18秒前
20秒前
白豆豆发布了新的文献求助10
23秒前
24秒前
尤之尤之发布了新的文献求助10
24秒前
yo一天完成签到 ,获得积分10
27秒前
28秒前
无私的香菇完成签到,获得积分10
29秒前
SONG完成签到,获得积分10
30秒前
Myownway完成签到,获得积分10
34秒前
充电宝应助zhuxiaonian采纳,获得10
35秒前
猪猪hero发布了新的文献求助10
37秒前
39秒前
orixero应助疏水无纺布采纳,获得10
40秒前
41秒前
猪猪hero发布了新的文献求助10
43秒前
43秒前
LJQ完成签到 ,获得积分20
45秒前
搜集达人应助adfasd采纳,获得30
46秒前
球球发布了新的文献求助50
46秒前
爱吃肉的羊完成签到,获得积分10
46秒前
杨茜然完成签到 ,获得积分10
50秒前
一坞鱼关注了科研通微信公众号
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5371020
求助须知:如何正确求助?哪些是违规求助? 4498017
关于积分的说明 14001696
捐赠科研通 4404279
什么是DOI,文献DOI怎么找? 2419253
邀请新用户注册赠送积分活动 1411942
关于科研通互助平台的介绍 1388320