Penalized joint models of high-dimensional longitudinal biomarkers and a survival outcome

结果(博弈论) 接头(建筑物) 医学 计量经济学 内科学 数学 工程类 数理经济学 建筑工程
作者
Jiehuan Sun,Sanjib Basu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2)
标识
DOI:10.1214/23-aoas1844
摘要

High-dimensional biomarkers, such as gene expression profiles, are often collected longitudinally to monitor disease progression in clinical studies, where the primary endpoint of interest is often a survival outcome. It is of great interest to study the associations between high-dimensional longitudinal biomarkers and the survival outcome as well as to identify biomarkers related to the survival outcome. Joint models, which have been extensively studied in the past decades, are commonly used to study the associations between longitudinal biomarkers and the survival outcome. However, existing joint models only consider one or a few longitudinal biomarkers and cannot deal with high-dimensional longitudinal biomarkers. In this paper we propose a novel penalized joint model that can handle high-dimensional longitudinal biomarkers. Specifically, we impose an adaptive lasso penalty on the parameters for the effects of the longitudinal biomarkers on the survival outcome, which allows for variable selection. We also develop a computationally efficient algorithm for model estimation based on the Gaussian variational approximation method, which can be implemented using the HDJM package in R. Furthermore, based on the penalized joint model, we propose a two-stage selection procedure that can reduce the estimation bias, due to the penalization, and allows for inference. We conduct extensive simulation studies to evaluate the performance of our proposed method. The performance of our proposed method is further demonstrated on a longitudinal gene expression dataset of patients with idiopathic pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助旷野采纳,获得10
1秒前
科研通AI5应助怕黑的凝旋采纳,获得10
1秒前
1秒前
qwp发布了新的文献求助10
3秒前
5秒前
王蕾完成签到 ,获得积分10
6秒前
8秒前
Co完成签到 ,获得积分10
9秒前
9秒前
14秒前
钟钟发布了新的文献求助10
14秒前
HuangXuexi关注了科研通微信公众号
14秒前
14秒前
彭认真完成签到,获得积分20
15秒前
彭认真发布了新的文献求助10
19秒前
十言完成签到,获得积分10
19秒前
20秒前
21秒前
星辰大海应助eueurhj采纳,获得10
23秒前
万能图书馆应助tallon采纳,获得10
24秒前
yize完成签到,获得积分10
24秒前
25秒前
沉睡宇宙发布了新的文献求助10
26秒前
芋圆完成签到 ,获得积分10
26秒前
鼠标划到头像完成签到,获得积分10
26秒前
李健的小迷弟应助虞美人采纳,获得10
27秒前
28秒前
31秒前
35秒前
39秒前
41秒前
冰魂应助qiangqiang采纳,获得30
41秒前
dd123完成签到,获得积分10
42秒前
壮观的晓瑶完成签到 ,获得积分10
43秒前
今后应助QinQin采纳,获得10
44秒前
科研通AI5应助欣喜的人龙采纳,获得10
44秒前
hhxhh发布了新的文献求助10
44秒前
44秒前
45秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824369
求助须知:如何正确求助?哪些是违规求助? 3366692
关于积分的说明 10442081
捐赠科研通 3085983
什么是DOI,文献DOI怎么找? 1697652
邀请新用户注册赠送积分活动 816450
科研通“疑难数据库(出版商)”最低求助积分说明 769640