材料科学
金属锂
锂(药物)
动力学
金属
固态
金属有机骨架
纳米技术
离子
化学工程
工程物理
电极
物理化学
阳极
冶金
有机化学
吸附
内分泌学
工程类
物理
化学
医学
量子力学
作者
Peng Wei,Yuheng Liu,Hong Zhang,Zhongzhuo Yang,Chenhui Dong,Ahmed Eissa Abdelmaoula,S. A. Salman,Zhenzhen Dou,Lin Xu
标识
DOI:10.1002/adfm.202516364
摘要
Abstract Quasi‐solid‐state electrolytes (QSSEs) represent a promising strategy to address the interfacial incompatibility of inorganic solid electrolytes and the sluggish ion kinetics of polymer solid electrolytes. Conventional approaches employ porous matrices to host minimal liquid electrolytes, yet remain constrained by limited ion transport enhancement and neglected electrode–electrolyte interfacial dynamics, resulting in poor electrochemical performance under high‐rate and high‐loading conditions. Hence, this work develops a novel quasi‐solid electrolyte through molecular engineering of metal–organic frameworks (UiO‐66‐Br electrolyte), which modulates Li⁺‐TFSI − interactions to establish solvent‐separated ion pairs (SSIPs)‐dominated solvation structures. This yields a high ionic conductivity of 1.58 mS cm −1 at 20 °C. Furthermore, the derived LiBr/LiF‐rich solid‐electrolyte interphase (SEI) enables ultrafast interfacial ion transport kinetics. Through synergistic promotion of bulk‐interfaces ion transport kinetics, while the LFP|UiO‐66‐Br|Li cells demonstrate exceptional cycling stability, achieving ≈100% capacity retention after 2300 cycles at 5 C with negligible decay. Under high mass‐loading conditions (>20 mg cm −2 ), which can maintain 95.1% capacity retention over 100 cycles. This molecular engineering strategy pioneers a new paradigm for designing high‐performance quasi‐solid‐state lithium‐metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI