DVGTformer: A dual-view graph Transformer to fuse multi-sensor signals for remaining useful life prediction

计算机科学 邻接矩阵 保险丝(电气) 变压器 人工智能 图形 数据挖掘 特征学习 模式识别(心理学) 机器学习 工程类 理论计算机科学 电压 电气工程
作者
Lei Wang,Hongrui Cao,Zhi‐Sheng Ye,Hao Xu,Jiaxiang Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:207: 110935-110935 被引量:8
标识
DOI:10.1016/j.ymssp.2023.110935
摘要

Deep learning-based remaining useful life (RUL) prediction methods have achieved great success due to their powerful capacity of feature representation especially when big data of condition monitoring is available. However, how to fuse multi-sensor information to facilitate RUL prediction accuracy remains a challenging problem due to the complex temporal and spatial dependencies within multi-sensor signals. To address this problem, we propose a dual-view graph Transformer, named as DVGTformer, for RUL prediction, which can fully learn potential degradation patterns from multi-sensor signals by capturing complex correlations within them. The proposed method involves the design of a novel graph Transformer, named as GTformer, by collaboratively integrating learnable graph adjacency matrix and multi-head self-attention to learn structural and dynamic correlations between the nodes of graphs. We then construct the DVGTformer for RUL prediction based on the GTformer. Each layer of a DVGTformer is formed by cascading a temporal-view GTformer layer and a spatial-view GTformer layer to fuse temporal and spatial information across time stamps and sensor nodes. Experimental results on the benchmark CMAPSS dataset and a wind turbine dataset from real applications show that our method consistently provides accurate and robust RUL prediction results compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助黄黄大可爱采纳,获得10
刚刚
1秒前
NexusExplorer应助shouyu29采纳,获得10
2秒前
睚眦倒影发布了新的文献求助10
4秒前
6秒前
6秒前
slr完成签到,获得积分10
6秒前
7秒前
一肖杯柠檬水完成签到,获得积分20
9秒前
9秒前
163发布了新的文献求助10
9秒前
9秒前
陈文文完成签到 ,获得积分10
10秒前
茶色小鸡完成签到,获得积分10
11秒前
陈秋发布了新的文献求助10
11秒前
星辰大海应助cici采纳,获得10
11秒前
科研通AI5应助Eurus采纳,获得10
12秒前
Galneryus发布了新的文献求助10
13秒前
14秒前
zyj完成签到,获得积分10
14秒前
15秒前
19秒前
taotao完成签到 ,获得积分10
22秒前
hongyi完成签到,获得积分10
23秒前
wxh完成签到 ,获得积分10
23秒前
旅人应助Galneryus采纳,获得10
24秒前
24秒前
27秒前
科研通AI5应助宜悟采纳,获得10
27秒前
齐静春完成签到 ,获得积分10
27秒前
好玩ab完成签到,获得积分10
28秒前
wxh关注了科研通微信公众号
29秒前
WWWUBING完成签到,获得积分10
29秒前
29秒前
YOMU发布了新的文献求助10
30秒前
科研通AI2S应助洪武采纳,获得10
30秒前
FashionBoy应助外向语堂采纳,获得10
32秒前
32秒前
盆浴烟发布了新的文献求助10
33秒前
香蕉觅云应助qq采纳,获得10
35秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848737
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568043
捐赠科研通 3112141
什么是DOI,文献DOI怎么找? 1715101
邀请新用户注册赠送积分活动 825560
科研通“疑难数据库(出版商)”最低求助积分说明 775647