Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system

计算机科学 对抗制 人工智能 交通标志识别 深度学习 机器学习 杠杆(统计) 云计算 传感器融合 符号(数学) 数学 交通标志 操作系统 数学分析
作者
Senthil Murugan Nagarajan,Ganesh Gopal Devarajan,Ramana T.V.,Asha Jerlin M.,Ali Kashif Bashir,Yasser D. Al‐Otaibi
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102050-102050 被引量:26
标识
DOI:10.1016/j.inffus.2023.102050
摘要

Intelligent Transportation Systems (ITS) have revolutionized transportation by incorporating advanced technologies for efficient and safe mobility. However, these systems face challenges ensuring security and resilience against adversarial attacks. This research addresses these challenges and introduces a novel Dampster–Shafer data fusion-based Adversarial Deep Learning (DS-ADL) Model for ITS in fog cloud environments. Our proposed model focuses on three levels of adversarial attacks: original image level, feature level, and decision level. Adversarial examples are generated at each level to evaluate the system's vulnerability comprehensively. To enhance the system's capabilities, we leverage the power of several vital components. Firstly, we employ Dempster–Shafer-based Multimodal Sensor Fusion, enabling the fusion of information from multiple sensors for improved scene understanding. This fusion approach enhances the system's perception and decision-making abilities. For feature extraction and classification, we utilize ResNet 101, a deep learning architecture known for its effectiveness in computer vision tasks. We introduced a novel Monomodal Multidimensional Gaussian Model (MMGM-DD) based Adversarial Detection approach to detect adversarial examples. This detection mechanism enhances the system's ability to identify and mitigate adversarial attacks in real-time. Additionally, we incorporate the Defensive Distillation method for adversarial training, which trains the model to be robust against attacks by exposing it to adversarial examples during the training process. To evaluate the performance of our proposed model, we utilize two datasets: Google Speech Command version 0.01 and the German Traffic Sign Recognition Benchmark (GTSRB). Evaluation metrics include latency delay and computation time (fog–cloud), accuracy, MSE, loss, and F-score for attack detection and defense. The results and discussions demonstrate the effectiveness of our Dampster–Shafer data fusion-based Adversarial Deep Learning Model in enhancing the robustness and security of ITS in fog–cloud environments. The model's ability to detect and defend against adversarial attacks while maintaining low-latency fog–cloud operations highlights its potential for real-world deployment in ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pgojpogk发布了新的文献求助10
1秒前
阿虎发布了新的文献求助10
1秒前
Happy_du发布了新的文献求助10
1秒前
1秒前
3秒前
香蕉觅云应助沉默的惜芹采纳,获得10
4秒前
4秒前
ceploup发布了新的文献求助30
5秒前
6秒前
6秒前
潘继坤完成签到,获得积分10
6秒前
眼睛大萃发布了新的文献求助10
7秒前
栖枝完成签到 ,获得积分10
7秒前
7秒前
阿虎完成签到,获得积分10
8秒前
清脆雪糕发布了新的文献求助10
8秒前
9秒前
10秒前
Orange应助Dritsw采纳,获得10
11秒前
11秒前
11秒前
hairuo194发布了新的文献求助10
12秒前
潘继坤发布了新的文献求助10
12秒前
Happy_du完成签到,获得积分10
12秒前
wangruiyang完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
ling发布了新的文献求助30
16秒前
李健的小迷弟应助ceploup采纳,获得10
17秒前
18秒前
18秒前
18秒前
wwmmyy完成签到 ,获得积分10
18秒前
19秒前
19秒前
Lucas应助Aria采纳,获得10
19秒前
深情安青应助潘继坤采纳,获得10
19秒前
爆米花应助不倦采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515023
求助须知:如何正确求助?哪些是违规求助? 4608619
关于积分的说明 14512371
捐赠科研通 4544873
什么是DOI,文献DOI怎么找? 2490248
邀请新用户注册赠送积分活动 1472154
关于科研通互助平台的介绍 1443925