光催化
材料科学
降级(电信)
亚甲蓝
极化(电化学)
化学工程
污染物
反应机理
辐照
机制(生物学)
复合材料
光化学
化学
催化作用
有机化学
物理化学
物理
电信
工程类
核物理学
量子力学
计算机科学
作者
Qianfei Ma,Jinyuan Ma,Xiaofeng Sun,Xiujuan Chen,Guorong Liu,Hua Yang
标识
DOI:10.1016/j.materresbull.2023.112559
摘要
Herein, we have synthesized BiVO4 (BVO) square bricks and spherical particles to elucidate the piezo-photocatalytic performance and involved synergistic mechanism. The photocatalytic, piezocatalytic and piezo-photocatalytic experiments were carried out under irradiation of simulated sunlight, ultrasonic wave and both of them, respectively. The degradation of methylene blue (MB) reveals that, for both BVO bricks and particles, the piezo-photocatalysis is greater than single photocatalysis and piezocatalysis, obviously manifesting a synergistic piezo-photocatalytic behavior according to the "1 + 1 > 2″ principle. The BVO bricks exhibit a higher synergistic effect than spherical particles, which is mainly due to the fact that photoexcited carriers in the square bricks can be directionally forced, by ultrasonic-induced polarization field, to specific surfaces. Density functional theory (DFT) calculation combined with finite-element method (FEM) simulation was performed to elucidate the piezo-photocatalytic mechanism of BVO. Moreover, the degradation pathways of MB and toxicities of degradation intermediates were analyzed.
科研通智能强力驱动
Strongly Powered by AbleSci AI