材料科学
免疫
小泡
免疫系统
生物
癌症研究
膜
免疫学
纳米技术
生物化学
作者
Jie Liang,Fei Zhu,Keman Cheng,Nana Ma,Xiaotu Ma,Qingqing Feng,Xu Chen,Xiaoyu Gao,Xinwei Wang,Jian Shi,Xiao Zhao,Guangjun Nie
标识
DOI:10.1002/adma.202306158
摘要
Trained immunity refers to the innate immune system building memory-like features in response to subsequent infections and vaccinations. Compared with classical tumor vaccines, trained immunity-related vaccines (TIrV) are independent of tumor-specific antigens. Bacterial outer membrane vesicles (OMVs) contain an abundance of PAMPs and have the potential to act as TIrV-inducer, but face challenges in endotoxin tolerance, systemic delivery, long-term training, and trained tumor-associated macrophage (TAM)-mediated antitumor phagocytosis. Here, an OMV-based TIrV is developed, OMV nanohybrids (OMV-SIRPα@CaP/GM-CSF) for exerting vaccine-enhanced antitumor activity. In the bone marrow, GM-CSF-assisted OMVs train bone marrow progenitor cells and monocytes, which are inherited by TAMs. In tumor tissues, SIRPα-Fc-assisted OMVs trigger TAM-mediated phagocytosis. This TIrV can be identified by metabolic and epigenetic rewiring using transposase-accessible chromatin (ATAC) and transcriptome sequencing. Furthermore, it is found that the TIrV-mediated antitumor mechanism in the MC38 tumor model (TAM-hot and T cell-cold) is trained immunity and activated T cell response, whereas in the B16-F10 tumor model (T cell-hot and TAM-cold) is primarily mediated by trained immunity. This study not only develops and identifies OMV-based TIrV, but also investigates the trained immunity signatures and therapeutic mechanisms, providing a basis for further vaccination strategies.
科研通智能强力驱动
Strongly Powered by AbleSci AI