Data-driven electronic packaging structure inverse design with an adaptive surrogate model

替代模型 水准点(测量) 计算机科学 反向 粒子群优化 数学优化 算法 机器学习 数学 几何学 大地测量学 地理
作者
Shaoyi Liu,Song Xue,Peiyuan Lian,Jianlun Huang,Zhihai Wang,Ping Li-hao,Congsi Wang
出处
期刊:Soldering & Surface Mount Technology [Emerald Publishing Limited]
卷期号:35 (5): 288-304
标识
DOI:10.1108/ssmt-04-2023-0020
摘要

Purpose The conventional design method relies on a priori knowledge, which limits the rapid and efficient development of electronic packaging structures. The purpose of this study is to propose a hybrid method of data-driven inverse design, which couples adaptive surrogate model technology with optimization algorithm to to enable an efficient and accurate inverse design of electronic packaging structures. Design/methodology/approach The multisurrogate accumulative local error-based ensemble forward prediction model is proposed to predict the performance properties of the packaging structure. As the forward prediction model is adaptive, it can identify respond to sensitive regions of design space and sample more design points in those regions, getting the trade-off between accuracy and computation resources. In addition, the forward prediction model uses the average ensemble method to mitigate the accuracy degradation caused by poor individual surrogate performance. The Particle Swarm Optimization algorithm is then coupled with the forward prediction model for the inverse design of the electronic packaging structure. Findings Benchmark testing demonstrated the superior approximate performance of the proposed ensemble model. Two engineering cases have shown that using the proposed method for inverse design has significant computational savings while ensuring design accuracy. In addition, the proposed method is capable of outputting multiple structure parameters according to the expected performance and can design the packaging structure based on its extreme performance. Originality/value Because of its data-driven nature, the inverse design method proposed also has potential applications in other scientific fields related to optimization and inverse design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开开心心的开心完成签到,获得积分10
1秒前
俏皮的松鼠完成签到 ,获得积分10
1秒前
sdl发布了新的文献求助10
2秒前
33发布了新的文献求助10
2秒前
小天才完成签到,获得积分20
4秒前
岚羽完成签到 ,获得积分10
5秒前
qq158014169完成签到 ,获得积分10
5秒前
项听蓉完成签到,获得积分10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
无餍应助科研通管家采纳,获得20
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
无餍应助科研通管家采纳,获得10
8秒前
myg123完成签到 ,获得积分10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
吹雪完成签到,获得积分0
9秒前
田様应助WJ采纳,获得10
9秒前
美满的泥猴桃完成签到 ,获得积分10
10秒前
小毛毛想睡觉完成签到 ,获得积分10
11秒前
心想事成发布了新的文献求助10
12秒前
Eliauk完成签到,获得积分10
13秒前
苦咖啡行僧完成签到 ,获得积分10
15秒前
热心的善愁完成签到,获得积分10
17秒前
WJ完成签到,获得积分10
18秒前
Andorchid完成签到,获得积分10
19秒前
庞伟泽完成签到,获得积分10
21秒前
壹拾柒完成签到,获得积分10
23秒前
lili完成签到 ,获得积分10
27秒前
28秒前
润润轩轩完成签到 ,获得积分10
28秒前
小米的稻田完成签到 ,获得积分10
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308