已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing and Learning Assortment Decisions in the Presence of Platform Disengagement

脱离理论 业务 计算机科学 医学 老年学
作者
Mika Sumida,Angela Zhou
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4537925
摘要

Problem definition: We consider a problem where customers repeatedly interact with a platform. During each interaction with the platform, the customer is shown an assortment of items and selects among these items according to a Multinomial Logit choice model. The probability that a customer interacts with the platform in the next period depends on the customer’s past purchase history. The goal of the platform is to maximize the total revenue obtained from each customer over a finite time horizon.Methodology/results: First, we study a non-learning version of the problem where consumer preferences and return probabilities are completely known. We formulate the problem as a dynamic program and prove structural properties of the optimal policy. Next, we provide a formulation in a contextual episodic reinforcement learning setting, where the parameters governing contextual consumer preferences and return probabilities are unknown and learned over multiple episodes. We develop an algorithm based on the principle of optimism under uncertainty for this problem and provide a regret bound.Managerial implications: Previous approaches that address user disengagement often constrain exploration. However, in our model with non-permanent disengagement with assortments, the optimal solution simply offers larger assortments at the beginning of the horizon and exploration is unconstrained during the learning process. We numerically illustrate model insights and demonstrate regimes where our algorithm outperforms naively myopic learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木讷山完成签到,获得积分10
刚刚
FLY完成签到,获得积分10
2秒前
4秒前
12完成签到 ,获得积分10
5秒前
Coral369发布了新的文献求助10
7秒前
9秒前
活泼的南风完成签到 ,获得积分10
10秒前
14秒前
19秒前
19秒前
20秒前
21秒前
时尚听筠发布了新的文献求助30
23秒前
24秒前
豆花浮元子完成签到 ,获得积分10
24秒前
24秒前
25秒前
26秒前
大渣饼完成签到 ,获得积分10
28秒前
孙佳苗完成签到,获得积分10
28秒前
29秒前
Man完成签到 ,获得积分10
31秒前
32秒前
金枪鱼子发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
36秒前
yydragen应助金枪鱼子采纳,获得50
41秒前
wab完成签到,获得积分0
45秒前
画晴完成签到,获得积分10
50秒前
飞逝的快乐时光完成签到 ,获得积分10
50秒前
可爱的函函应助xcwy采纳,获得10
52秒前
52秒前
ZZZ完成签到,获得积分20
52秒前
vine发布了新的文献求助10
53秒前
54秒前
57秒前
乐乐应助加辣加辣采纳,获得10
58秒前
xcwy发布了新的文献求助10
1分钟前
lucky22完成签到 ,获得积分10
1分钟前
1分钟前
ZHEN发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042501
求助须知:如何正确求助?哪些是违规求助? 3580193
关于积分的说明 11383005
捐赠科研通 3308441
什么是DOI,文献DOI怎么找? 1820591
邀请新用户注册赠送积分活动 893427
科研通“疑难数据库(出版商)”最低求助积分说明 815599