A survey of FPGA and ASIC designs for transformer inference acceleration and optimization

计算机科学 现场可编程门阵列 专用集成电路 嵌入式系统 计算机体系结构 变压器 计算机硬件 计算机工程 电气工程 工程类 电压
作者
Beom Jin Kang,Hae In Lee,Seok Kyu Yoon,Young Chan Kim,Sang Beom Jeong,Seong Jun O,Hyun Kim
出处
期刊:Journal of Systems Architecture [Elsevier BV]
卷期号:155: 103247-103247
标识
DOI:10.1016/j.sysarc.2024.103247
摘要

Recently, transformer-based models have achieved remarkable success in various fields, such as computer vision, speech recognition, and natural language processing. However, transformer models require a substantially higher number of parameters and computational operations than conventional neural networks (e.g., recurrent neural networks, long-short-term memory, and convolutional neural networks). Transformer models are typically processed on graphics processing unit (GPU) platforms specialized for high-performance memory and parallel processing. However, the high power consumption of GPUs poses significant challenges for their deployment in edge device environments with limited battery capacity. To address these issues, research on using field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) to drive transformer models with low power consumption is underway. FPGAs offer a high level of flexibility, whereas ASICs are beneficial for optimizing throughput and power. Therefore, both platforms are highly suitable for efficiently optimizing matrix multiplication operations, constituting a significant portion of transformer models. In addition, FPGAs and ASICs consume less power than GPUs, making them ideal energy-efficient platforms. This study investigates and analyzes the model compression methods, various optimization techniques, and architectures of accelerators related to FPGA- and ASIC-based transformer designs. We expect this study to serve as a valuable guide for hardware research in the transformer field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助加贝采纳,获得10
刚刚
爆米花应助加贝采纳,获得10
刚刚
mmm发布了新的文献求助10
1秒前
2秒前
浮游应助loogn7采纳,获得10
2秒前
FashionBoy应助李照普采纳,获得10
2秒前
2秒前
清新的姝发布了新的文献求助10
3秒前
嘻嘻哈哈应助哈哈哈哈哈采纳,获得10
3秒前
demon发布了新的文献求助10
4秒前
4秒前
陈转霞发布了新的文献求助10
5秒前
李llll完成签到,获得积分10
5秒前
su完成签到,获得积分10
6秒前
6秒前
小马甲应助火星上飞扬采纳,获得10
6秒前
科研通AI6应助认真蚂蚁采纳,获得10
6秒前
6秒前
熊大完成签到,获得积分10
8秒前
8秒前
lu发布了新的文献求助10
8秒前
8秒前
orixero应助晨阳采纳,获得10
8秒前
9秒前
9秒前
ding应助偷影子里局外人采纳,获得10
9秒前
10秒前
10秒前
玄天明月发布了新的文献求助10
10秒前
阳光发布了新的文献求助200
10秒前
11秒前
斌城发布了新的文献求助10
12秒前
wzy发布了新的文献求助10
12秒前
ssusshan1021发布了新的文献求助30
14秒前
花融应助Nowind采纳,获得10
14秒前
dlfg发布了新的文献求助10
14秒前
14秒前
裴永乐发布了新的文献求助10
15秒前
李照普发布了新的文献求助10
15秒前
奋斗灵珊发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263241
求助须知:如何正确求助?哪些是违规求助? 4423888
关于积分的说明 13771111
捐赠科研通 4298829
什么是DOI,文献DOI怎么找? 2358729
邀请新用户注册赠送积分活动 1354999
关于科研通互助平台的介绍 1316209