Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

免疫系统 肝细胞癌 免疫组织化学 病理 间质细胞 医学 肿瘤异质性 免疫分型 基质 癌症 免疫学 流式细胞术 癌症研究 内科学
作者
Caner Ercan,Salvatore Lorenzo Renne,Luca Di Tommaso,Charlotte K.Y. Ng,Salvatore Piscuoglio,Luigi Terracciano
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:3
标识
DOI:10.1158/1078-0432.ccr-24-0960
摘要

Abstract Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental Design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿雷完成签到,获得积分10
刚刚
刚刚
1秒前
ding应助lilei采纳,获得10
1秒前
heyan完成签到,获得积分10
1秒前
伯赏夜南完成签到,获得积分10
1秒前
姚美阁发布了新的文献求助10
1秒前
朴实夏寒完成签到,获得积分10
2秒前
哈哈王发布了新的文献求助10
2秒前
2秒前
木南完成签到 ,获得积分10
2秒前
cc完成签到,获得积分10
2秒前
收手吧大哥应助lee采纳,获得10
2秒前
3秒前
FashionBoy应助since采纳,获得10
4秒前
科研通AI6应助kk采纳,获得10
4秒前
sen完成签到,获得积分10
5秒前
Twinkle完成签到,获得积分10
5秒前
5秒前
夜阑卧听完成签到,获得积分10
5秒前
mm完成签到,获得积分10
5秒前
5秒前
线条完成签到 ,获得积分10
5秒前
5秒前
富贵发布了新的文献求助10
5秒前
vivian完成签到,获得积分10
5秒前
俊秀的海云完成签到,获得积分10
7秒前
7秒前
铱铱的胡萝卜完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
俭朴夜香完成签到,获得积分10
8秒前
苏洋完成签到 ,获得积分10
8秒前
领导范儿应助氕1采纳,获得10
8秒前
吃饭了没完成签到,获得积分10
8秒前
彭于晏应助快乐的柚子采纳,获得10
9秒前
9秒前
葛老四发布了新的文献求助10
9秒前
世佳何完成签到,获得积分10
9秒前
拼搏的睫毛膏完成签到,获得积分10
9秒前
changyongcheng完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345523
求助须知:如何正确求助?哪些是违规求助? 3852076
关于积分的说明 12023505
捐赠科研通 3493663
什么是DOI,文献DOI怎么找? 1917056
邀请新用户注册赠送积分活动 960029
科研通“疑难数据库(出版商)”最低求助积分说明 860057