Early Yield Estimation in Viticulture Based on Grapevine Inflorescence Detection and Counting in Videos

花序 计算机科学 人工智能 计算机视觉 基本事实 RGB颜色模型 模式识别(心理学) 园艺 生物
作者
Muhammad Rizwan Khokher,Qiyu Liao,Adam L. Smith,Changming Sun,D. H. Mackenzie,Mark R. Thomas,Dadong Wang,Everard J. Edwards
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 37790-37808 被引量:14
标识
DOI:10.1109/access.2023.3263238
摘要

In viticulture, yield estimation is a key activity, which is important throughout the wine industry value chain. The earlier that an accurate yield estimation can be made the greater its value, increasing management options for grape growers and commercial options for winemakers. For the yield estimate based on in-field measurements at scale, the number of inflorescences emerging after bud-burst offers the earliest practical signal, allowing a yield potential to be determined months before harvest. This paper presents an approach to automatically count the inflorescence number at the phenological stage E-L 12 using RGB video data and demonstrates its use for estimating yield. A dataset consisting of RGB videos was collected shortly after bud-burst from multiple vineyards, in conjunction with hand counts to produce a manual ground-truth for the inflorescence counting task. The video frames were annotated using bounding-boxes around the inflorescences to produce a digital ground-truth. A deep learning architecture was developed to learn features from the video frames during training and detect the inflorescences at the later inference stage. The detection results were fed to a tracking pipeline built using computer vision and deep learning techniques to generate numbers of inflorescences present in test videos. The visual and quantitative results are presented and evaluated for the inflorescence detection and counting tasks. The developed inflorescence detector achieves an average precision of 80.00%, a recall of 83.92%, and an F1-score of 80.48%, through a five-fold cross-validation on the annotated dataset. For the test videos, the developed automatic inflorescence counting model reports an absolute error of 11.03 inflorescences per panel, a normalized mean absolute error of 10.80%, and an R 2 of 0.86, when the predicted per-panel counts were compared to the corresponding manual ground-truth. Based on the counting results, we estimate an early yield that is within 4% to 11% error when compared to the actual yield after harvest. Based on these results and a separate analysis of the relationship between hand counts of inflorescences and harvest yields in three vineyards over three growing seasons, we conclude that computer vision and machine learning based methods have the potential to provide early yield estimation in viticulture with a commercially viable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海带完成签到,获得积分10
刚刚
研友_VZG7GZ应助sssxy采纳,获得10
刚刚
咩了个咩发布了新的文献求助10
刚刚
桃紫完成签到,获得积分10
1秒前
搜集达人应助XPDHW采纳,获得10
1秒前
英姑应助霍霍采纳,获得10
1秒前
小鱼完成签到,获得积分10
2秒前
along完成签到,获得积分10
2秒前
jin_strive完成签到,获得积分10
2秒前
Janson完成签到,获得积分10
3秒前
彭于晏应助包子采纳,获得10
3秒前
3秒前
3秒前
nowss完成签到,获得积分10
4秒前
1020完成签到,获得积分10
4秒前
dtcao发布了新的文献求助10
5秒前
MQueen完成签到,获得积分10
5秒前
传奇3应助CNJX采纳,获得10
6秒前
思源应助HY采纳,获得10
6秒前
小七完成签到,获得积分10
6秒前
6秒前
缓慢听枫完成签到,获得积分10
6秒前
TeeteePor完成签到,获得积分10
7秒前
shizi完成签到,获得积分10
8秒前
能干蜜蜂完成签到,获得积分10
8秒前
饭神仙鱼完成签到,获得积分10
8秒前
中国大陆完成签到,获得积分10
8秒前
EF发布了新的文献求助10
9秒前
自觉沛文完成签到,获得积分10
9秒前
自信寒蕾完成签到,获得积分10
10秒前
D33sama完成签到,获得积分10
11秒前
11秒前
12秒前
香蕉静芙完成签到,获得积分10
12秒前
12秒前
12秒前
万能图书馆应助咩了个咩采纳,获得10
13秒前
ri_290完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946103
求助须知:如何正确求助?哪些是违规求助? 4210399
关于积分的说明 13087991
捐赠科研通 3991051
什么是DOI,文献DOI怎么找? 2184933
邀请新用户注册赠送积分活动 1200304
关于科研通互助平台的介绍 1113980