A Multiscale Hollow Spherical LATP Active Filler Improves Conductivity and Mechanical Strength in Composite Solid Electrolytes for Li Batteries

复合数 电解质 材料科学 电导率 陶瓷 聚合物 复合材料 离子电导率 化学工程 电极 化学 物理化学 工程类
作者
Bebi Patil,Benjamin R. Howell,Joshua W. Gallaway
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:126 (36): 15104-15117 被引量:12
标识
DOI:10.1021/acs.jpcc.2c04870
摘要

Polymer-based electrolytes would be ideal for all-solid-state Li metal batteries due to the superior processability of polymers and their ability to make good interfaces with electrode materials. However, polymer electrolytes have lower room temperature Li+ conductivities than desired. Composite solid electrolytes (CSEs) containing both polymer and ceramic filler have far greater conductivity than the polymer alone, and it is believed this is due to conduction paths along the polymer–ceramic interface. A strategy often pursued for increasing conductivity has been to engineer the filler with a high aspect ratio shape, such as nanorods or interconnected nanofibers. In this work we employ a multiscale hollow spherical filler, which is not directional but achieves similar conductivity to those with fibrous morphologies. The hollow spherical shape avoids agglomeration and provides continuous Li+ transfer channels. We fabricated multiscale hollow spherical ceramic Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanoparticles for use in a poly(ethylene oxide) (PEO) matrix. This network also provided structural support and enhanced the mechanical properties of the polymer matrix, which is important for a battery electrolyte. The resulting CSE membrane had room temperature ionic conductivity of 1.64 × 10–4 S/cm. Li/Li symmetric cells using this CSE showed no short circuits for 500 h cycling at a current density 0.1 mA cm–2. Control cells using standard LATP powder showed higher overpotential and dendrite failure, as did the polymer membrane with no LATP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪电小超人完成签到,获得积分10
1秒前
Derek0203完成签到,获得积分10
1秒前
Owen应助wenbo采纳,获得10
2秒前
s1mple完成签到,获得积分10
2秒前
温暖的问候完成签到,获得积分10
3秒前
SYLH应助嗯嗯采纳,获得10
3秒前
3秒前
着急的小松鼠完成签到,获得积分10
4秒前
SEER发布了新的文献求助10
4秒前
敏感的文龙完成签到,获得积分10
5秒前
wang完成签到,获得积分20
6秒前
阿里巴巴完成签到,获得积分10
6秒前
Eldrazi完成签到,获得积分20
6秒前
研友_enPaaZ完成签到 ,获得积分20
6秒前
温柔的幻露完成签到,获得积分10
6秒前
liuhao发布了新的文献求助10
8秒前
MichaelQin完成签到,获得积分10
8秒前
一禾生发布了新的文献求助10
8秒前
安菲尔德完成签到,获得积分10
9秒前
呆萌滑板完成签到 ,获得积分10
9秒前
目光之澄发布了新的文献求助10
9秒前
鸣笛应助Bambookiller采纳,获得100
10秒前
CC完成签到,获得积分10
10秒前
wenbo完成签到,获得积分0
11秒前
pptt完成签到,获得积分10
11秒前
ZZZ333完成签到,获得积分10
11秒前
xue完成签到,获得积分20
11秒前
橡皮鱼完成签到,获得积分10
12秒前
13秒前
苏世誉完成签到,获得积分10
14秒前
myLv98完成签到,获得积分10
14秒前
水仙完成签到,获得积分10
15秒前
上官若男应助liuxiaoliu采纳,获得10
15秒前
15秒前
16秒前
深情安青应助linkman采纳,获得30
16秒前
一禾生完成签到,获得积分10
17秒前
17秒前
李西瓜完成签到,获得积分10
17秒前
啊阿阿阿沐完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946395
求助须知:如何正确求助?哪些是违规求助? 3491506
关于积分的说明 11061043
捐赠科研通 3222453
什么是DOI,文献DOI怎么找? 1780998
邀请新用户注册赠送积分活动 866010
科研通“疑难数据库(出版商)”最低求助积分说明 800105