Towards sweetness classification of orange cultivars using short-wave NIR spectroscopy

甜蜜 可滴定酸 糖度 橙色(颜色) 数学 栽培 偏最小二乘回归 相关系数 化学 人工智能 食品科学 园艺 统计 计算机科学 生物
作者
Ayesha Zeb,Waqar S. Qureshi,Abdul Ghafoor,Amanullah Malik,Muhammad Imran,Alina Mirza,Mohsin I. Tiwana,Eisa Alanazi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-022-27297-2
摘要

Abstract The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张秋雨发布了新的文献求助10
刚刚
苹果小玉发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得30
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
瑞_应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得30
4秒前
4秒前
不困还能肝完成签到,获得积分10
4秒前
鉴湖完成签到,获得积分10
4秒前
不会学习的小郭完成签到 ,获得积分10
5秒前
77完成签到 ,获得积分10
6秒前
筋筋子完成签到,获得积分10
9秒前
努力向上的小刘完成签到,获得积分10
11秒前
14秒前
qiulong发布了新的文献求助10
17秒前
advance发布了新的文献求助10
20秒前
21秒前
24秒前
安详从云发布了新的文献求助10
24秒前
科研通AI5应助meimei采纳,获得10
27秒前
27秒前
iidae完成签到,获得积分10
30秒前
溶胶发布了新的文献求助10
30秒前
乐乐应助小小鱼采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921