已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MMGK: Multimodality Multiview Graph Representations and Knowledge Embedding for Mild Cognitive Impairment Diagnosis

多模态 计算机科学 嵌入 图形 神经影像学 人工智能 认知障碍 图嵌入 认知 机器学习 模式识别(心理学) 理论计算机科学 医学 精神科 万维网
作者
Jin Liu,Hao Du,Rui Guo,Harrison X. Bai,Hulin Kuang,Jianxin Wang
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 389-398 被引量:14
标识
DOI:10.1109/tcss.2022.3216483
摘要

The diagnosis of mild cognitive impairment (MCI), which is an early stage of Alzheimer's disease (AD), has great clinical significance. Medical imaging and gene sequencing technologies have provided sufficient multimodality data for MCI diagnostic studies. However, how to effectively extract the rich representations from multimodality data remains a challenging task. To address this challenging task, we propose a new multimodality multiview graph representations and knowledge embedding (MMGK) framework to diagnose MCI. First, to obtain rich information from multimodality data, we extract multiview feature representations from magnetic resonance imaging (MRI) and genetic data. Afterward, considering the correlations between subjects, all subjects are constructed into a graph based on the different single-view feature representations, respectively. To further enrich the correlations between subjects, demographic data are utilized through knowledge embedding. Finally, to perform MCI diagnosis on multiview graphs, graph convolutional networks (GCNs) are utilized. In addition, to further improve the performance of MCI diagnosis, a two-step ensemble learning method is proposed. The proposed framework is evaluated on 188 subjects from the AD Neuroimaging Initiative (ADNI). Experimental results show that our proposed framework achieves good performance with accuracy reaching 0.888, and outperforms some state-of-the-art (SOTA) methods. In addition, the proposed framework is applied to Parkinson's disease (PD) diagnosis and achieves 0.856 accuracy. Overall, our proposed method has potential for clinical application in MCI diagnosis and other diseases via integrating MRI, genetic data, and demographic data. Our code is available at: https://github.com/miacsu/MMGK .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Merlin完成签到 ,获得积分10
刚刚
小六九完成签到 ,获得积分10
6秒前
123123完成签到 ,获得积分10
7秒前
HeLL0完成签到 ,获得积分10
9秒前
生动的若之完成签到 ,获得积分10
11秒前
13秒前
123完成签到 ,获得积分10
13秒前
赘婿应助wzh采纳,获得20
14秒前
15秒前
15秒前
痴情的博超完成签到,获得积分10
17秒前
阿瓜发布了新的文献求助10
19秒前
Jenny发布了新的文献求助10
20秒前
和气生财君完成签到 ,获得积分10
21秒前
沉默发布了新的文献求助10
22秒前
22秒前
含蓄戾发布了新的文献求助10
27秒前
29秒前
shame完成签到 ,获得积分10
29秒前
30秒前
搁浅完成签到,获得积分10
30秒前
沉默完成签到,获得积分10
31秒前
淡定的健柏完成签到 ,获得积分10
32秒前
35秒前
89发布了新的文献求助10
35秒前
高大厉完成签到,获得积分10
35秒前
赘婿应助阿瓜采纳,获得10
36秒前
852应助天真的幼萱采纳,获得10
36秒前
Ava应助Jenny采纳,获得10
37秒前
YY完成签到,获得积分10
38秒前
41秒前
41秒前
爆米花应助留下就好采纳,获得10
41秒前
新手上路完成签到,获得积分10
43秒前
一夜暴富完成签到 ,获得积分10
47秒前
整齐的笑柳完成签到,获得积分10
47秒前
zhaoxi完成签到 ,获得积分10
47秒前
马喽打工仔完成签到,获得积分10
54秒前
54秒前
笨笨娇完成签到 ,获得积分10
56秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800840
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329131
捐赠科研通 3062791
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702