Using artificial intelligence (AI) to predict the conversion of cognitively unimpaired individuals to mild cognitive impairment

口语流利性测试 认知 神经影像学 认知功能衰退 神经认知 痴呆 心理学 医学 机器学习 人工智能 听力学 物理医学与康复 临床心理学 神经心理学 内科学 计算机科学 精神科 疾病
作者
Alya AL Rawi,Nehal Hassan,Ríona Mc Ardle,Sarah P. Slight
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S18)
标识
DOI:10.1002/alz.075166
摘要

Abstract Background Mild cognitive impairment (MCI) is the objective decline in neurocognitive functioning, but without significant impairment of the individual’s ability to perform the usual instrumental activities of daily living (1). Diagnosing MCI can be done using a combination of different methods such as cognitive testing, structural neuroimaging, nuclear imaging, and cerebrospinal fluids, and plasma biomarkers. Some of these methods are invasive and expensive. Machine learning (ML) algorithms can be trained to predict the onset of MCI, using data from non‐invasive methods. Method Four databases (WoS, MEDLINE, EMBASE, and CINAHL) were searched using search string of relevant terms (cognitive decline, artificial intelligence, prediction, and cognitively unimpaired). Articles that reportedtrained ML algorithms using non‐invasive predictors of MCI in cognitively healthy adults (≥ 18 years old) were included. The review was registered with PROSPERO (CRD42022379027) and PRISMA guidelines were followed. The Newcastle‐Ottawa Quality Assessment scale was used to assess the quality of studies. Result Of the 1,098 articles identified and screened, 22 studies were included. 373 non‐invasive predictors of MCI were identified. The most prevalent predictors included: demographic information (age, sex, years in education), voice and speech parameters (sentence repeating, semantic fluency), gait parameters (velocity, cadence, step time), performance on cognitive tests (MMSE, K‐MoCA, CDR, AD8), eye‐movements (pupil diameter, saccade orientation) and Instrumental activity of daily livings (medication, finance management). The maximum and minimum number of predictors used to develop a ML algorithm was 121 and 2, respectively. The ML algorithms developed in the included studies had (average sensitivity and specificity of 77.90%±22 and 80.84%±18, respectively) exceeded the performance of algorithms that used invasive and expensive predictors such as nuclear imaging and neuroimaging which achieved accuracy scores (60%‐77%) (2). Conclusion Non‐invasive predictors can be used to train ML algorithms to predict the onset of MCI in cognitively healthy individuals with good accuracy scores exceeding 70%. These algorithms may can aid clinician decision making, thus setting early treatment plans, and allowing individuals to be involved in care planning before progression of MCI to dementia AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Jiayou Zhang采纳,获得10
刚刚
1秒前
2秒前
3秒前
周志昂发布了新的文献求助10
3秒前
傲震发布了新的文献求助10
5秒前
ccm应助文静不凡采纳,获得10
5秒前
陆康发布了新的文献求助10
6秒前
莹莹哒完成签到,获得积分10
7秒前
7秒前
玛卡巴卡完成签到 ,获得积分10
7秒前
时兆娟完成签到,获得积分20
8秒前
科目三应助TT采纳,获得10
8秒前
范12完成签到,获得积分10
8秒前
科目三应助bibibabibobi采纳,获得10
8秒前
9秒前
会更好完成签到,获得积分10
9秒前
qinjiayin完成签到,获得积分10
10秒前
111111完成签到,获得积分10
10秒前
田様应助Jiayou Zhang采纳,获得10
11秒前
开朗亦绿完成签到,获得积分10
11秒前
小柴柴完成签到 ,获得积分10
11秒前
13秒前
zkk完成签到,获得积分10
13秒前
xxfsx应助伶俐骁采纳,获得10
13秒前
hxx发布了新的文献求助10
13秒前
13秒前
脑洞疼应助哭泣的无血采纳,获得10
13秒前
14秒前
大渴血佳发布了新的文献求助10
14秒前
14秒前
彭于晏应助demon采纳,获得10
17秒前
17秒前
科研通AI6应助刻苦莫言采纳,获得10
17秒前
梦话完成签到,获得积分20
17秒前
旷野完成签到 ,获得积分10
17秒前
阿良发布了新的文献求助10
18秒前
无极微光应助科研通管家采纳,获得20
18秒前
Hello应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436885
求助须知:如何正确求助?哪些是违规求助? 4548752
关于积分的说明 14216335
捐赠科研通 4469149
什么是DOI,文献DOI怎么找? 2449356
邀请新用户注册赠送积分活动 1440294
关于科研通互助平台的介绍 1416755