Capturing COPD heterogeneity: anomaly detection and parametric response mapping comparison for phenotyping on chest computed tomography

慢性阻塞性肺病 异常检测 金标准(测试) 医学 潜在类模型 参数统计 异常(物理) 模式识别(心理学) 内科学 放射科 计算机科学 人工智能 数学 统计 机器学习 物理 凝聚态物理
作者
Sílvia D. Almeida,Tobias Norajitra,Carsten T. Lüth,Tassilo Wald,Vivienn Weru,Marco Nolden,Paul F. Jäger,Oyunbileg von Stackelberg,Claus Peter Heußel,Oliver Weinheimer,Jürgen Biederer,Hans‐Ulrich Kauczor,Klaus H. Maier‐Hein
出处
期刊:Frontiers in Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fmed.2024.1360706
摘要

Chronic obstructive pulmonary disease (COPD) poses a substantial global health burden, demanding advanced diagnostic tools for early detection and accurate phenotyping. In this line, this study seeks to enhance COPD characterization on chest computed tomography (CT) by comparing the spatial and quantitative relationships between traditional parametric response mapping (PRM) and a novel self-supervised anomaly detection approach, and to unveil potential additional insights into the dynamic transitional stages of COPD.Non-contrast inspiratory and expiratory CT of 1,310 never-smoker and GOLD 0 individuals and COPD patients (GOLD 1-4) from the COPDGene dataset were retrospectively evaluated. A novel self-supervised anomaly detection approach was applied to quantify lung abnormalities associated with COPD, as regional deviations. These regional anomaly scores were qualitatively and quantitatively compared, per GOLD class, to PRM volumes (emphysema: PRMEmph, functional small-airway disease: PRMfSAD) and to a Principal Component Analysis (PCA) and Clustering, applied on the self-supervised latent space. Its relationships to pulmonary function tests (PFTs) were also evaluated.Initial t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the self-supervised latent space highlighted distinct spatial patterns, revealing clear separations between regions with and without emphysema and air trapping. Four stable clusters were identified among this latent space by the PCA and Cluster Analysis. As the GOLD stage increased, PRMEmph, PRMfSAD, anomaly score, and Cluster 3 volumes exhibited escalating trends, contrasting with a decline in Cluster 2. The patient-wise anomaly scores significantly differed across GOLD stages (p < 0.01), except for never-smokers and GOLD 0 patients. In contrast, PRMEmph, PRMfSAD, and cluster classes showed fewer significant differences. Pearson correlation coefficients revealed moderate anomaly score correlations to PFTs (0.41-0.68), except for the functional residual capacity and smoking duration. The anomaly score was correlated with PRMEmph (r = 0.66, p < 0.01) and PRMfSAD (r = 0.61, p < 0.01). Anomaly scores significantly improved fitting of PRM-adjusted multivariate models for predicting clinical parameters (p < 0.001). Bland-Altman plots revealed that volume agreement between PRM-derived volumes and clusters was not constant across the range of measurements.Our study highlights the synergistic utility of the anomaly detection approach and traditional PRM in capturing the nuanced heterogeneity of COPD. The observed disparities in spatial patterns, cluster dynamics, and correlations with PFTs underscore the distinct - yet complementary - strengths of these methods. Integrating anomaly detection and PRM offers a promising avenue for understanding of COPD pathophysiology, potentially informing more tailored diagnostic and intervention approaches to improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
锦江完成签到,获得积分10
刚刚
发酱发布了新的文献求助10
1秒前
SSSimon完成签到,获得积分10
1秒前
英姑应助echo采纳,获得10
1秒前
白桃发布了新的文献求助10
1秒前
2秒前
yuyu关注了科研通微信公众号
2秒前
blossom发布了新的文献求助10
2秒前
小录发布了新的文献求助30
3秒前
独角兽发布了新的文献求助10
3秒前
ZZW完成签到,获得积分20
3秒前
清脆的蓝天完成签到,获得积分20
3秒前
空竹完成签到,获得积分10
3秒前
123完成签到 ,获得积分10
4秒前
苏幕遮完成签到,获得积分10
4秒前
慕青应助橘子橙子采纳,获得20
4秒前
寻光人发布了新的文献求助10
4秒前
英俊的铭应助失眠鹤采纳,获得10
5秒前
5秒前
在水一方应助xx采纳,获得10
5秒前
只昂张完成签到 ,获得积分10
5秒前
俊逸寄灵发布了新的文献求助10
5秒前
浮游应助自觉草莓采纳,获得10
6秒前
lili完成签到 ,获得积分10
6秒前
黑猩猩完成签到,获得积分10
6秒前
袁初南完成签到,获得积分10
6秒前
7秒前
dkm完成签到,获得积分10
7秒前
7秒前
现代萃完成签到,获得积分10
7秒前
lei.qin完成签到 ,获得积分10
7秒前
7秒前
一秋一年发布了新的文献求助10
8秒前
8秒前
8秒前
小二郎应助wangfugui采纳,获得10
9秒前
NexusExplorer应助小水滴采纳,获得10
10秒前
guozizi发布了新的文献求助100
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511083
求助须知:如何正确求助?哪些是违规求助? 4605828
关于积分的说明 14495709
捐赠科研通 4540975
什么是DOI,文献DOI怎么找? 2488254
邀请新用户注册赠送积分活动 1470413
关于科研通互助平台的介绍 1442806