Identification of a novel stemness-related signature with appealing implications in discriminating the prognosis and therapy responses for prostate cancer

前列腺癌 免疫疗法 肿瘤科 癌症干细胞 癌症 免疫系统 生物 前列腺 CD44细胞 干细胞 癌症研究 肿瘤微环境 内科学 医学 免疫学 细胞 遗传学
作者
Teng Zhang,Jun Li,Junyong Dai,Fang Yuan,Gangjun Yuan,Han Chen,Dawei Zhu,Xin Mao,Lei Qin,Nan Liu,Mingzhen Yang
出处
期刊:Cancer genetics [Elsevier BV]
卷期号:276-277: 48-59 被引量:7
标识
DOI:10.1016/j.cancergen.2023.07.005
摘要

Cancer stemness represents the tumor-initiation and self-renewal potentials of cancer stem cells. It is involved in prostate cancer progression and resistance to therapy. Herein, we aimed to unveil the stemness features, establish a novel prognostic model, and identify potential therapeutic targets.26 stemness-related signatures were obtained from StemChecker. The expression profiles and clinical traits of TCGA-PRAD were obtained from TCGA and cBioPortal, respectively. GSE5446 and GSE70769 cohorts were acquired from GEO. PRAD_MSKCC cohort was also retrieved via the cBioPortal. The consensus clustering method was used for stemness subclusters classification. WGCNA was used to identify hub genes related to the stemness subcluster. The most important feature was explored in vitro.Prostate cancer patients of TCGA-PRAD were divided into two subclusters (C1 and C2) based on the enrichment scores of the 26 stemness-related signatures. C1 was characterized by decreased survival, rich infiltrations of M0 macrophages and regulatory T cells, minimum sensitivity to chemotherapy, and a low response to immunotherapy. Hub genes of the red module with the highest correlation with C1 were subsequently identified by WGCNA and subjected to stemness-related risk model construction based on the machine-learning framework. Prostate cancer patients with high stemness scores had unfavorable prognosis, immunosuppressive tumor microenvironment, minimum sensitivity to chemotherapy, and a low response to immunotherapy. MXD3, the most important factor of the model, can regulate the stemness traits of prostate cancer cells.Our study depicted the stemness landscapes of prostate cancer and characterized two subclusters with diverse prognoses and tumor immune microenvironments. A stemness-risk signature was developed and demonstrated prospective implications in predicting prognosis and precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐难敌发布了新的文献求助10
刚刚
wwww发布了新的文献求助40
刚刚
图图应助cm采纳,获得10
1秒前
黄姗姗发布了新的文献求助10
2秒前
H1998完成签到,获得积分10
2秒前
ZLX完成签到,获得积分10
2秒前
2秒前
snow完成签到,获得积分10
2秒前
2秒前
li123xxx发布了新的文献求助10
2秒前
nurzat发布了新的文献求助10
3秒前
Wudifairy完成签到,获得积分10
3秒前
陶醉如柏完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
左右脑完成签到,获得积分10
4秒前
噔噔蹬完成签到 ,获得积分10
4秒前
bbdx完成签到 ,获得积分10
4秒前
nicoleJ发布了新的文献求助10
5秒前
5秒前
bxll完成签到 ,获得积分10
6秒前
7秒前
7秒前
爱撒娇的靖琪完成签到,获得积分10
8秒前
tjunqi完成签到,获得积分10
8秒前
关尔匕禾页完成签到,获得积分10
8秒前
ATOW完成签到,获得积分10
9秒前
9秒前
铌钛钒发布了新的文献求助10
9秒前
虚拟的秋寒完成签到,获得积分10
10秒前
2420083884发布了新的文献求助10
10秒前
乐观小之应助忐忑的阑香采纳,获得10
10秒前
冰雪物语发布了新的文献求助10
10秒前
阿科完成签到 ,获得积分10
10秒前
高高猎豹完成签到 ,获得积分10
11秒前
整齐的伊完成签到,获得积分20
11秒前
zhen完成签到 ,获得积分10
11秒前
阿夸完成签到,获得积分10
12秒前
ZHQ发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Orion Flight Test-1 Thermal Protection System Instrumentation 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834745
求助须知:如何正确求助?哪些是违规求助? 3377277
关于积分的说明 10497354
捐赠科研通 3096673
什么是DOI,文献DOI怎么找? 1705123
邀请新用户注册赠送积分活动 820470
科研通“疑难数据库(出版商)”最低求助积分说明 772055