MaskFuser: Masked Fusion of Joint Multi-Modal Tokenization for End-to-End Autonomous Driving

端到端原则 计算机科学 接头(建筑物) 融合 情态动词 计算机视觉 人工智能 工程类 结构工程 语言学 材料科学 哲学 高分子化学
作者
Yiqun Duan,Xianda Guo,Zhu Zheng,Zhen Wang,Yukai WANG,Chin‐Teng Lin
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2405.07573
摘要

Current multi-modality driving frameworks normally fuse representation by utilizing attention between single-modality branches. However, the existing networks still suppress the driving performance as the Image and LiDAR branches are independent and lack a unified observation representation. Thus, this paper proposes MaskFuser, which tokenizes various modalities into a unified semantic feature space and provides a joint representation for further behavior cloning in driving contexts. Given the unified token representation, MaskFuser is the first work to introduce cross-modality masked auto-encoder training. The masked training enhances the fusion representation by reconstruction on masked tokens. Architecturally, a hybrid-fusion network is proposed to combine advantages from both early and late fusion: For the early fusion stage, modalities are fused by performing monotonic-to-BEV translation attention between branches; Late fusion is performed by tokenizing various modalities into a unified token space with shared encoding on it. MaskFuser respectively reaches a driving score of 49.05 and route completion of 92.85% on the CARLA LongSet6 benchmark evaluation, which improves the best of previous baselines by 1.74 and 3.21%. The introduced masked fusion increases driving stability under damaged sensory inputs. MaskFuser outperforms the best of previous baselines on driving score by 6.55 (27.8%), 1.53 (13.8%), 1.57 (30.9%), respectively given sensory masking ratios 25%, 50%, and 75%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助勤奋的冰枫采纳,获得10
刚刚
华仔应助王媛采纳,获得30
2秒前
2秒前
缓慢平蓝发布了新的文献求助10
2秒前
Monsters发布了新的文献求助10
2秒前
岩岩岩完成签到,获得积分10
2秒前
Chen发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
JokerCing完成签到,获得积分10
5秒前
Daijh完成签到,获得积分10
5秒前
5秒前
周士翔发布了新的文献求助10
6秒前
6秒前
缓慢平蓝完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
王小茗完成签到,获得积分10
6秒前
7秒前
zxf完成签到,获得积分20
7秒前
Cactus发布了新的文献求助10
9秒前
yh关注了科研通微信公众号
9秒前
LIULIU发布了新的文献求助10
9秒前
执着鸡翅发布了新的文献求助20
9秒前
ZHU关闭了ZHU文献求助
10秒前
三金发布了新的文献求助10
10秒前
高兴不尤发布了新的文献求助10
10秒前
1212完成签到,获得积分10
10秒前
10秒前
q12发布了新的文献求助10
10秒前
10秒前
11秒前
淡淡的南风发布了新的文献求助100
11秒前
fadvdzb关注了科研通微信公众号
12秒前
张慧杰发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
李健的小迷弟应助北落采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103