亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Based Facial and Skeletal Transformations for Surgical Planning

地标 计算机科学 人工智能 面子(社会学概念) 手术计划 颅面 模式识别(心理学) 计算机视觉 医学 社会科学 精神科 社会学 放射科
作者
Jiahao Bao,X. Zhang,Shuguang Xiang,Hao Liu,Ming Cheng,Yang Yang,Xiaolin Huang,Wei Xiang,Wenpeng Cui,Hong Lai,Shuo Huang,Yan Wang,Dianwei Qian,Hong Yu
出处
期刊:Journal of Dental Research [SAGE]
被引量:9
标识
DOI:10.1177/00220345241253186
摘要

The increasing application of virtual surgical planning (VSP) in orthognathic surgery implies a critical need for accurate prediction of facial and skeletal shapes. The craniofacial relationship in patients with dentofacial deformities is still not understood, and transformations between facial and skeletal shapes remain a challenging task due to intricate anatomical structures and nonlinear relationships between the facial soft tissue and bones. In this study, a novel bidirectional 3-dimensional (3D) deep learning framework, named P2P-ConvGC, was developed and validated based on a large-scale data set for accurate subject-specific transformations between facial and skeletal shapes. Specifically, the 2-stage point-sampling strategy was used to generate multiple nonoverlapping point subsets to represent high-resolution facial and skeletal shapes. Facial and skeletal point subsets were separately input into the prediction system to predict the corresponding skeletal and facial point subsets via the skeletal prediction subnetwork and facial prediction subnetwork. For quantitative evaluation, the accuracy was calculated with shape errors and landmark errors between the predicted skeleton or face with corresponding ground truths. The shape error was calculated by comparing the predicted point sets with the ground truths, with P2P-ConvGC outperforming existing state-of-the-art algorithms including P2P-Net, P2P-ASNL, and P2P-Conv. The total landmark errors (Euclidean distances of craniomaxillofacial landmarks) of P2P-ConvGC in the upper skull, mandible, and facial soft tissues were 1.964 ± 0.904 mm, 2.398 ± 1.174 mm, and 2.226 ± 0.774 mm, respectively. Furthermore, the clinical feasibility of the bidirectional model was validated using a clinical cohort. The result demonstrated its prediction ability with average surface deviation errors of 0.895 ± 0.175 mm for facial prediction and 0.906 ± 0.082 mm for skeletal prediction. To conclude, our proposed model achieved good performance on the subject-specific prediction of facial and skeletal shapes and showed clinical application potential in postoperative facial prediction and VSP for orthognathic surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小马甲应助时不我待C采纳,获得10
6秒前
12秒前
时不我待C发布了新的文献求助10
16秒前
17秒前
含蓄蓝天发布了新的文献求助10
23秒前
Criminology34举报乐白求助涉嫌违规
34秒前
xl_c完成签到,获得积分10
39秒前
42秒前
6666应助mmyhn采纳,获得10
49秒前
59秒前
爱思考的小笨笨完成签到,获得积分10
1分钟前
1分钟前
嗨Honey完成签到 ,获得积分10
1分钟前
nihao完成签到 ,获得积分10
1分钟前
1分钟前
shain完成签到,获得积分10
1分钟前
惠1完成签到,获得积分10
1分钟前
Criminology34举报暖暖求助涉嫌违规
1分钟前
天天向上的小熊猫完成签到,获得积分10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
Criminology34举报ppp求助涉嫌违规
1分钟前
2分钟前
Huan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ava应助Huan采纳,获得10
2分钟前
WYP发布了新的文献求助10
2分钟前
科研通AI6应助小蜻蜓采纳,获得50
2分钟前
金www完成签到 ,获得积分10
2分钟前
WYP完成签到,获得积分20
2分钟前
岳莹晓完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
星辰大海应助时不我待C采纳,获得10
3分钟前
拼搏姒发布了新的文献求助10
3分钟前
3分钟前
小橘子完成签到,获得积分10
3分钟前
3分钟前
时不我待C发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5313253
求助须知:如何正确求助?哪些是违规求助? 4456760
关于积分的说明 13867076
捐赠科研通 4345463
什么是DOI,文献DOI怎么找? 2386563
邀请新用户注册赠送积分活动 1380822
关于科研通互助平台的介绍 1349361