Topological Data Analysis in Graph Neural Networks: Surveys and Perspectives

拓扑数据分析 深度学习 计算机科学 代表(政治) 人工神经网络 功率图分析 图形 拓扑(电路) 机器学习 人工智能 理论计算机科学 数学 组合数学 算法 政治 政治学 法学
作者
Phu Pham,Quang‐Thinh Bui,Ngoc Thanh Nguyen,Róbert Kozma,Philip S. Yu,Bay Vo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (6): 9758-9776 被引量:17
标识
DOI:10.1109/tnnls.2024.3520147
摘要

For many years, topological data analysis (TDA) and deep learning (DL) have been considered separate data analysis and representation learning approaches, which have nothing in common. The root cause of this challenge comes from the difficulties in building, extracting, and integrating TDA constructs, such as barcodes or persistent diagrams, within deep neural network architectures. Therefore, the powers of these two approaches are still on their islands and have not yet combined to form more powerful tools for dealing with multiple complex data analysis tasks. Fortunately, we have witnessed several remarkable attempts to integrate DL-based architectures with topological learning paradigms in recent years. These topology-driven DL techniques have notably improved data-driven analysis and mining problems, especially within graph datasets. Recently, graph neural networks (GNNs) have emerged as a popular deep neural architecture, demonstrating significant performance in various graph-based analysis and learning problems. Explicitly, within the manifold paradigm, the graph is naturally considered as a topological object (e.g., the topological properties of the given graph can be represented by the edge weights). Therefore, integrating TDA and GNN is considered an excellent combination. Many well-known studies have recently presented the effectiveness of TDA-assisted GNN-based architectures in dealing with complex graph-based data representation analysis and learning problems. Motivated by the successes of recent research, we present systematic literature about this nascent and promising research direction in this article, which includes general taxonomy, preliminaries, and recently proposed state-of-the-art topology-driven GNN models and perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Ih6uaZ采纳,获得10
1秒前
姬绪建发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
研友_VZG7GZ应助aidiresi采纳,获得10
4秒前
Zhi应助相龙采纳,获得10
5秒前
limyao完成签到,获得积分20
5秒前
5秒前
JIO发布了新的文献求助80
8秒前
8秒前
软软萌萌发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
可爱的函函应助KCC采纳,获得10
12秒前
LIUJIE完成签到,获得积分10
13秒前
14秒前
SSY发布了新的文献求助10
14秒前
16秒前
16秒前
18秒前
18秒前
19秒前
超级驼鹿发布了新的文献求助10
21秒前
藤井树完成签到,获得积分20
21秒前
量子星尘发布了新的文献求助10
22秒前
KCC完成签到,获得积分10
22秒前
23秒前
研究僧发布了新的文献求助10
23秒前
星辰大海应助siuuuuu采纳,获得10
23秒前
minever白完成签到,获得积分10
24秒前
KCC发布了新的文献求助10
24秒前
26秒前
28秒前
科研通AI6.1应助SSY采纳,获得10
28秒前
28秒前
南淮完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777681
求助须知:如何正确求助?哪些是违规求助? 5634904
关于积分的说明 15446453
捐赠科研通 4909598
什么是DOI,文献DOI怎么找? 2641824
邀请新用户注册赠送积分活动 1589755
关于科研通互助平台的介绍 1544203