Predicting Diagnostic Progression to Schizophrenia or Bipolar Disorder via Machine Learning

双相情感障碍 精神分裂症(面向对象编程) 精神科 医学 逻辑回归 接收机工作特性 精神疾病 队列 情感障碍症 儿科 心理健康 内科学 心情 狂躁
作者
Lasse Hansen,Martin Bernstorff,Kenneth Enevoldsen,Sara Kolding,Jakob Grøhn Damgaard,Erik Perfalk,Kristoffer Laigaard Nielbo,Andreas Aalkjær Danielsen,Søren Dinesen Østergaard
出处
期刊:JAMA Psychiatry [American Medical Association]
被引量:9
标识
DOI:10.1001/jamapsychiatry.2024.4702
摘要

Importance The diagnosis of schizophrenia and bipolar disorder is often delayed several years despite illness typically emerging in late adolescence or early adulthood, which impedes initiation of targeted treatment. Objective To investigate whether machine learning models trained on routine clinical data from electronic health records (EHRs) can predict diagnostic progression to schizophrenia or bipolar disorder among patients undergoing treatment in psychiatric services for other mental illness. Design, Setting, and Participants This cohort study was based on data from EHRs from the Psychiatric Services of the Central Denmark Region. All patients aged 15 to 60 years with at least 2 contacts (at least 3 months apart) with the Psychiatric Services of the Central Denmark Region between January 1, 2013, and November 21, 2016, were included. Analysis occurred from December 2022 to November 2024. Exposures Predictors based on EHR data, including medications, diagnoses, and clinical notes. Main Outcomes and Measures Diagnostic transition to schizophrenia or bipolar disorder within 5 years, predicted 1 day before outpatient contacts by means of elastic net regularized logistic regression and extreme gradient boosting (XGBoost) models. The area under the receiver operating characteristic curve (AUROC) was used to determine the best performing model. Results The study included 24 449 patients (median [Q1-Q3] age at time of prediction, 32.2 [24.2-42.5] years; 13 843 female [56.6%]) and 398 922 outpatient contacts. Transition to the first occurrence of either schizophrenia or bipolar disorder was predicted by the XGBoost model, with an AUROC of 0.70 (95% CI, 0.70-0.70) on the training set and 0.64 (95% CI, 0.63-0.65) on the test set, which consisted of 2 held-out hospital sites. At a predicted positive rate of 4%, the XGBoost model had a sensitivity of 9.3%, a specificity of 96.3%, and a positive predictive value (PPV) of 13.0%. Predicting schizophrenia separately yielded better performance (AUROC, 0.80; 95% CI, 0.79-0.81; sensitivity, 19.4%; specificity, 96.3%; PPV, 10.8%) than was the case for bipolar disorder (AUROC, 0.62, 95% CI, 0.61-0.63; sensitivity, 9.9%; specificity, 96.2%; PPV, 8.4%). Clinical notes proved particularly informative for prediction. Conclusions and Relevance These findings suggest that it is possible to predict diagnostic transition to schizophrenia and bipolar disorder from routine clinical data extracted from EHRs, with schizophrenia being notably easier to predict than bipolar disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缓慢完成签到,获得积分10
1秒前
1秒前
4秒前
Hello应助街道办事部采纳,获得10
4秒前
桐桐应助心灵美的咖啡豆采纳,获得10
4秒前
乐乐应助离离原上草采纳,获得20
5秒前
changping应助Genius采纳,获得10
6秒前
科研通AI6应助霜降采纳,获得10
6秒前
小二郎应助眨眼采纳,获得10
6秒前
西门子云发布了新的文献求助10
7秒前
7秒前
传奇3应助妍妍采纳,获得10
7秒前
蜡笔小鑫发布了新的文献求助10
7秒前
DeepLearning完成签到,获得积分20
9秒前
9秒前
月亮发布了新的文献求助10
10秒前
稳重的寿司完成签到,获得积分10
11秒前
lixiao发布了新的文献求助10
12秒前
小二郎应助牧秋妈妈采纳,获得10
13秒前
wanan完成签到 ,获得积分20
13秒前
健壮的涑发布了新的文献求助10
13秒前
浮游应助梨花月采纳,获得30
13秒前
13秒前
13秒前
13秒前
Chen完成签到 ,获得积分10
14秒前
欢呼海露发布了新的文献求助10
14秒前
15秒前
Hello应助月亮采纳,获得10
15秒前
15秒前
15秒前
####完成签到 ,获得积分10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
经络应助科研通管家采纳,获得10
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133231
求助须知:如何正确求助?哪些是违规求助? 4334485
关于积分的说明 13503790
捐赠科研通 4171346
什么是DOI,文献DOI怎么找? 2287143
邀请新用户注册赠送积分活动 1288047
关于科研通互助平台的介绍 1228849