Predicting Diagnostic Progression to Schizophrenia or Bipolar Disorder via Machine Learning

双相情感障碍 精神分裂症(面向对象编程) 精神科 医学 逻辑回归 接收机工作特性 精神疾病 队列 情感障碍症 儿科 心理健康 内科学 心情 狂躁
作者
Lasse Hansen,Martin Bernstorff,Kenneth Enevoldsen,Sara Kolding,Jakob Grøhn Damgaard,Erik Perfalk,Kristoffer L. Nielbo,Andreas Aalkjær Danielsen,Søren Dinesen Østergaard
出处
期刊:JAMA Psychiatry [American Medical Association]
标识
DOI:10.1001/jamapsychiatry.2024.4702
摘要

Importance The diagnosis of schizophrenia and bipolar disorder is often delayed several years despite illness typically emerging in late adolescence or early adulthood, which impedes initiation of targeted treatment. Objective To investigate whether machine learning models trained on routine clinical data from electronic health records (EHRs) can predict diagnostic progression to schizophrenia or bipolar disorder among patients undergoing treatment in psychiatric services for other mental illness. Design, Setting, and Participants This cohort study was based on data from EHRs from the Psychiatric Services of the Central Denmark Region. All patients aged 15 to 60 years with at least 2 contacts (at least 3 months apart) with the Psychiatric Services of the Central Denmark Region between January 1, 2013, and November 21, 2016, were included. Analysis occurred from December 2022 to November 2024. Exposures Predictors based on EHR data, including medications, diagnoses, and clinical notes. Main Outcomes and Measures Diagnostic transition to schizophrenia or bipolar disorder within 5 years, predicted 1 day before outpatient contacts by means of elastic net regularized logistic regression and extreme gradient boosting (XGBoost) models. The area under the receiver operating characteristic curve (AUROC) was used to determine the best performing model. Results The study included 24 449 patients (median [Q1-Q3] age at time of prediction, 32.2 [24.2-42.5] years; 13 843 female [56.6%]) and 398 922 outpatient contacts. Transition to the first occurrence of either schizophrenia or bipolar disorder was predicted by the XGBoost model, with an AUROC of 0.70 (95% CI, 0.70-0.70) on the training set and 0.64 (95% CI, 0.63-0.65) on the test set, which consisted of 2 held-out hospital sites. At a predicted positive rate of 4%, the XGBoost model had a sensitivity of 9.3%, a specificity of 96.3%, and a positive predictive value (PPV) of 13.0%. Predicting schizophrenia separately yielded better performance (AUROC, 0.80; 95% CI, 0.79-0.81; sensitivity, 19.4%; specificity, 96.3%; PPV, 10.8%) than was the case for bipolar disorder (AUROC, 0.62, 95% CI, 0.61-0.63; sensitivity, 9.9%; specificity, 96.2%; PPV, 8.4%). Clinical notes proved particularly informative for prediction. Conclusions and Relevance These findings suggest that it is possible to predict diagnostic transition to schizophrenia and bipolar disorder from routine clinical data extracted from EHRs, with schizophrenia being notably easier to predict than bipolar disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿白完成签到 ,获得积分10
1秒前
优雅的平安完成签到 ,获得积分10
3秒前
兴奋的定帮完成签到 ,获得积分10
5秒前
哈哈哈的一笑完成签到 ,获得积分10
6秒前
zhao完成签到,获得积分10
9秒前
小瓶盖完成签到 ,获得积分10
12秒前
张占完成签到,获得积分10
16秒前
曾泓跃完成签到 ,获得积分10
19秒前
安详映阳完成签到 ,获得积分10
20秒前
chris发布了新的文献求助10
25秒前
Leo完成签到 ,获得积分10
27秒前
在水一方应助小点点cy_采纳,获得10
36秒前
科研通AI2S应助机智的雁风采纳,获得10
40秒前
chris完成签到,获得积分10
41秒前
43秒前
Dash发布了新的文献求助10
47秒前
西山菩提完成签到,获得积分10
47秒前
我是老大应助无奈的萍采纳,获得10
50秒前
Yan完成签到 ,获得积分10
50秒前
跳跃的鹏飞完成签到 ,获得积分10
52秒前
Guo完成签到 ,获得积分10
56秒前
舒服的月饼完成签到 ,获得积分10
1分钟前
1分钟前
忆茶戏完成签到 ,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
1分钟前
JY完成签到 ,获得积分10
1分钟前
无奈的萍发布了新的文献求助10
1分钟前
小点点cy_发布了新的文献求助10
1分钟前
默默灭绝完成签到 ,获得积分10
1分钟前
慧子完成签到,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
可飞完成签到,获得积分10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
葛力发布了新的文献求助10
1分钟前
分析完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
小点点cy_完成签到,获得积分10
1分钟前
葛力完成签到,获得积分10
1分钟前
LELE完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782712
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234458
捐赠科研通 3043084
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994