Batch Mode Query by Committee for Motor Imagery-Based BCI

计算机科学 脑-机接口 线性判别分析 人工智能 特征向量 特征选择 模式识别(心理学) 运动表象 分类器(UML) 特征提取 同种类的 数据挖掘 机器学习 数学 脑电图 精神科 组合数学 心理学
作者
Ibrahim Hossain,Abbas Khosravi,Imali Hettiarachchi,Saeid Nahavandi
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 13-21 被引量:10
标识
DOI:10.1109/tnsre.2018.2883594
摘要

Although brain-computer interface (BCI) has potential application in the rehabilitation of neural disease and performance improvement of the human in the loop system, it is restricted in the laboratory environment. One of the hindrances behind this restriction is the requirement of a long training data collection session for the user prior to operation of the system at each time. Several approaches have been proposed including the reduction of training data maintaining the robust performance. One of them is active learning (AL) which asks for labeling the training samples and it has the potential to reach robust performance using reduced informative training set. In this paper, one of the AL methods, query by committee (QBC), is applied by forming the committee in heterogeneous and homogeneous feature space. In heterogeneous feature space, three state-of-the-art feature extraction methods are coupled with linear discriminant analysis classifier. For homogeneous feature space, random K -fold sampling is applied after extracting the features using a single method to form the committee of K -members. The joint accuracy by QBC-heterogeneous has obtained the baselines using maximum 35% of the whole training set. It also shows a significant difference at the 5% significance level from QBC-homogeneous selection as well as other contemporary AL methods and random selection method. Thus, QBC-heterogeneous has reduced the labeling effort and the training data collection effort significantly more than that of random labeling process. It infers that QBC is a potential candidate for abridging overall calibration time of BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wrzzz完成签到,获得积分10
2秒前
shishuang发布了新的文献求助10
3秒前
科研通AI6.1应助阚曦采纳,获得10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
CodeCraft应助念安采纳,获得10
7秒前
小脸红扑扑完成签到 ,获得积分10
7秒前
xu完成签到,获得积分10
7秒前
7秒前
聪慧的从丹完成签到 ,获得积分10
8秒前
白小飞发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
小不发布了新的文献求助10
10秒前
11秒前
14秒前
香蕉觅云应助眉间尺采纳,获得10
15秒前
15秒前
16秒前
阚曦发布了新的文献求助10
17秒前
ding应助悲凉的新筠采纳,获得10
17秒前
泡菜鱼oo完成签到,获得积分10
17秒前
圆锥香蕉应助失眠夏山采纳,获得20
17秒前
18秒前
biu12038发布了新的文献求助10
18秒前
大个应助wzy采纳,获得10
18秒前
18秒前
20秒前
科研通AI6.1应助lilium采纳,获得10
21秒前
21秒前
21秒前
田様应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
无名应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785489
求助须知:如何正确求助?哪些是违规求助? 5688312
关于积分的说明 15467719
捐赠科研通 4914607
什么是DOI,文献DOI怎么找? 2645280
邀请新用户注册赠送积分活动 1593069
关于科研通互助平台的介绍 1547408