Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine

极限学习机 计算机科学 人工智能 卷积神经网络 联营 人工神经网络 断层(地质) 机器学习 分类器(UML) 模式识别(心理学) 数据挖掘 地质学 地震学
作者
Zhuyun Chen,Konstantinos Gryllias,Weihua Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:133: 106272-106272 被引量:202
标识
DOI:10.1016/j.ymssp.2019.106272
摘要

In the era of the so called 4th industrial revolution, the Factory of the Future and the Industrial Internet of Things, the industrial mechanical systems become continuously more intelligent and more complex. Therefore, there is a clear need for research and development on data driven methodologies and condition monitoring techniques which are able to achieve fast, reliable and high-quality diagnosis in an automatic manner. In this paper, a novel fault diagnosis approach integrating Convolutional Neural Networks (CNN) and Extreme Learning Machine (ELM) is proposed, consisting of three main stages. Firstly, the Continuous Wavelet Transform (CWT) is employed in order to obtain pre-processed representations of raw vibration signals. Secondly, a CNN with a square pooling architecture is constructed to extract high-level features. The model does not require extra training and fine-tuning, which can effectively reduce computational cost. Finally, ELM as a strong classifier is further utilized to improve the classification performance on the diagnosis framework. Two datasets, including a gearbox dataset and a motor bearing dataset, have been collected and used to verify the effectiveness of the proposed method. A comprehensive comparison and analysis with widely used algorithms is also performed. The results demonstrate that the proposed method can detect different fault types and outperforms other methods in terms of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
73Jennie123完成签到,获得积分10
2秒前
苗广山完成签到,获得积分10
2秒前
西瓜椰奶发布了新的文献求助10
3秒前
nulinuli完成签到 ,获得积分10
3秒前
Finch11完成签到 ,获得积分10
4秒前
深情安青应助zsj3787采纳,获得10
5秒前
故酒应助Benhnhk21采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
缥缈纲应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
liangguangyuan完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
淡然冬灵应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
natsu401完成签到 ,获得积分10
7秒前
梓歆完成签到 ,获得积分10
8秒前
机灵水卉完成签到 ,获得积分10
9秒前
言非离完成签到 ,获得积分10
10秒前
11秒前
陈豆豆完成签到 ,获得积分10
12秒前
张成完成签到 ,获得积分10
12秒前
飞哥完成签到 ,获得积分10
15秒前
16秒前
悦耳玲完成签到 ,获得积分10
17秒前
不知道完成签到 ,获得积分10
20秒前
江江江江江江江江完成签到,获得积分10
24秒前
南滨完成签到 ,获得积分10
24秒前
27秒前
彭于晏应助小乔采纳,获得10
27秒前
高贵宛海完成签到,获得积分10
27秒前
vincentbioinfo完成签到,获得积分10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346582
关于积分的说明 10329956
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726