Data-Driven Distributionally Robust Appointment Scheduling over Wasserstein Balls

计算机科学 数学优化 调度(生产过程) 模棱两可 稳健优化 地铁列车时刻表 半定规划 概率分布 随机规划 线性规划 随机变量 数学 统计 操作系统 程序设计语言
作者
Ruiwei Jiang,Minseok Ryu,Guanglin Xu
出处
期刊:Cornell University - arXiv 被引量:17
标识
DOI:10.48550/arxiv.1907.03219
摘要

We study a single-server appointment scheduling problem with a fixed sequence of appointments, for which we must determine the arrival time for each appointment. We specifically examine two stochastic models. In the first model, we assume that all appointees show up at the scheduled arrival times yet their service durations are random. In the second model, we assume that appointees have random no-show behaviors and their service durations are random given that they show up at the appointments. In both models, we assume that the probability distribution of the uncertain parameters is unknown but can be partially observed via a set of historical data, which we view as independent samples drawn from the unknown distribution. In view of the distributional ambiguity, we propose a data-driven distributionally robust optimization (DRO) approach to determine an appointment schedule such that the worst-case (i.e., maximum) expectation of the system total cost is minimized. A key feature of this approach is that the optimal value and the set of optimal schedules thus obtained provably converge to those of the true model, i.e., the stochastic appointment scheduling model with regard to the true probability distribution of the uncertain parameters. While our DRO models are computationally intractable in general, we reformulate them to copositive programs, which are amenable to tractable semidefinite programming problems with high-quality approximations. Furthermore, under some mild conditions, we recast these models as polynomial-sized linear programs. Through an extensive numerical study, we demonstrate that our approach yields better out-of-sample performance than two state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
正正应助Kongkong采纳,获得10
2秒前
3秒前
猫橘汽水发布了新的文献求助10
3秒前
闵松岳完成签到,获得积分20
4秒前
4秒前
安小安完成签到,获得积分10
4秒前
5秒前
SciGPT应助解惑采纳,获得10
5秒前
小二郎应助解惑采纳,获得10
5秒前
科研川完成签到,获得积分10
5秒前
YM完成签到,获得积分10
6秒前
6秒前
lalanlang发布了新的文献求助10
6秒前
6秒前
灵栅完成签到,获得积分10
7秒前
西蜀小吏发布了新的文献求助10
8秒前
8秒前
9秒前
PO8完成签到,获得积分10
9秒前
小蘑菇应助闵松岳采纳,获得10
10秒前
Xzj发布了新的文献求助10
10秒前
浮游应助WNL采纳,获得10
11秒前
12秒前
12秒前
qiyr完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
关闭右耳完成签到,获得积分10
13秒前
Cc发布了新的文献求助10
13秒前
KK_ad完成签到,获得积分10
13秒前
yy完成签到,获得积分10
13秒前
14秒前
Homura发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
afatinib完成签到,获得积分10
16秒前
bkagyin应助Xzj采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648614
求助须知:如何正确求助?哪些是违规求助? 4775865
关于积分的说明 15044750
捐赠科研通 4807529
什么是DOI,文献DOI怎么找? 2570836
邀请新用户注册赠送积分活动 1527657
关于科研通互助平台的介绍 1486538