Spectral–Spatial Residual Graph Attention Network for Hyperspectral Image Classification

残余物 高光谱成像 计算机科学 人工智能 模式识别(心理学) 卷积(计算机科学) 判别式 图形 特征提取 卷积神经网络 人工神经网络 空间分析 遥感 数学 算法 理论计算机科学 地理
作者
Kejie Xu,Yue Zhao,Lingming Zhang,Chenqiang Gao,Hong Huang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:29
标识
DOI:10.1109/lgrs.2021.3111985
摘要

Hyperspectral images (HSIs) not only possess abundant spectral features but also present a detailed spatial distribution of land cover, and they have significant advantages in the fine classification of ground materials. Recently, using convolutional neural networks (CNNs) to extract spectral–spatial features has become an effective way for HSI classification. However, conventional convolution kernels learn features from fixed regular square regions, and rich spatial information has not been effectively explored. In this letter, an end-to-end model named spectral–spatial residual graph attention network (S 2 RGANet) is developed for HSI classification, and it has two crucial elements, including spectral residual and graph attention convolution modules. At first, two spectral residual modules are employed to capture discriminant spectral features. Then, graphs are constructed to reveal the relationship between points in local neighborhoods. By graph attention mechanism, local spatial information is adaptively aggregated from neighboring nodes. Experiments on two public HSI datasets demonstrate that the S 2 RGANet is significantly superior to some state-of-the-art (SOTA) methods with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第9527号文明完成签到,获得积分10
刚刚
狗大王完成签到,获得积分10
刚刚
1秒前
3秒前
丘比特应助liuguyue采纳,获得10
3秒前
ygtrece完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
哇owao发布了新的文献求助10
5秒前
5秒前
乐风完成签到,获得积分10
6秒前
顾矜应助momm852采纳,获得10
6秒前
阿切完成签到,获得积分10
7秒前
7秒前
深情安青应助善良的冷雁采纳,获得10
7秒前
8秒前
薄荷味的你关注了科研通微信公众号
9秒前
单薄裘完成签到,获得积分10
9秒前
杜嘟嘟发布了新的文献求助10
9秒前
小马甲应助dachengzi采纳,获得10
9秒前
MelanMiao完成签到,获得积分10
10秒前
10秒前
10秒前
ssy发布了新的文献求助10
10秒前
wzy发布了新的文献求助10
11秒前
su完成签到 ,获得积分10
11秒前
科研通AI5应助复杂的天玉采纳,获得10
11秒前
13秒前
蓝岳洋完成签到 ,获得积分10
13秒前
清爽的不评完成签到,获得积分10
13秒前
碗碗发布了新的文献求助10
13秒前
wanci应助七七采纳,获得10
13秒前
李健应助小丽采纳,获得10
13秒前
上官若男应助轻松尔蝶采纳,获得20
14秒前
14秒前
沈惠映完成签到 ,获得积分10
14秒前
14秒前
14秒前
橙子慢慢来完成签到,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960