Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modeling of Hemodynamics

计算流体力学 血流动力学 计算机科学 机器学习 人工神经网络 结果(博弈论) 深度学习 人工智能 心脏病学 医学 数学 工程类 数理经济学 航空航天工程
作者
Pavlo Yevtushenko,Leonid Goubergrits,Lina Gundelwein,Arnaud A. A. Setio,Heiko Ramm,Hans Lamecker,Tobias Heimann,Alexander Meyer,Titus Küehne,Marie Schafstedde
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (4): 1815-1825 被引量:30
标识
DOI:10.1109/jbhi.2021.3116764
摘要

Image-based patient-specific modelling of hemodynamics are gaining increased popularity as a diagnosis and outcome prediction solution for a variety of cardiovascular diseases. While their potential to improve diagnostic capabilities and thereby clinical outcome is widely recognized, these methods require considerable computational resources since they are mostly based on conventional numerical methods such as computational fluid dynamics (CFD). As an alternative to the numerical methods, we propose a machine learning (ML) based approach to calculate patient-specific hemodynamic parameters. Compared to CFD based methods, our approach holds the benefit of being able to calculate a patient-specific hemodynamic outcome instantly with little need for computational power. In this proof-of-concept study, we present a deep artificial neural network (ANN) capable of computing hemodynamics for patients with aortic coarctation in a centerline aggregated (i.e., locally averaged) form. Considering the complex relation between vessels shape and hemodynamics on the one hand and the limited availability of suitable clinical data on the other, a sufficient accuracy of the ANN may however not be achieved with available data only. Another key aspect of this study is therefore the successful augmentation of available clinical data. Using a statistical shape model, additional training data was generated which substantially increased the ANN's accuracy, showcasing the ability of ML based methods to perform in-silico modelling tasks previously requiring resource intensive CFD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳一稳发布了新的文献求助10
1秒前
1秒前
无言完成签到,获得积分10
1秒前
2秒前
Judy发布了新的文献求助10
2秒前
酷波er应助小文子采纳,获得10
2秒前
栗子发布了新的文献求助10
3秒前
4秒前
嘛呱发布了新的文献求助10
5秒前
对照发布了新的文献求助10
5秒前
打打应助魁梧的钧采纳,获得10
6秒前
6秒前
Stone发布了新的文献求助10
7秒前
无花果应助agony采纳,获得10
7秒前
在水一方应助沐雨采纳,获得10
7秒前
独特的哈密瓜数据线完成签到,获得积分10
8秒前
英俊的铭应助小乔采纳,获得10
9秒前
李爱国应助夕夜采纳,获得30
9秒前
朴素青雪完成签到 ,获得积分10
9秒前
9秒前
缥缈书翠完成签到 ,获得积分20
10秒前
10秒前
脑洞疼应助莫我肯顾采纳,获得10
10秒前
哈哈哈完成签到,获得积分10
11秒前
Wzf完成签到 ,获得积分10
12秒前
13秒前
酷波er应助DreamerKing采纳,获得10
13秒前
14秒前
14秒前
Jasper应助22222采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
余鱼发布了新的文献求助50
16秒前
拉长的晓蕾完成签到,获得积分10
16秒前
Wzf关注了科研通微信公众号
17秒前
17秒前
18秒前
想躺平完成签到,获得积分10
18秒前
马俐发布了新的文献求助10
19秒前
iman完成签到,获得积分10
19秒前
清爽老九发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113211
求助须知:如何正确求助?哪些是违规求助? 4320670
关于积分的说明 13463003
捐赠科研通 4152040
什么是DOI,文献DOI怎么找? 2275055
邀请新用户注册赠送积分活动 1276988
关于科研通互助平台的介绍 1215158