Image-based surface scratch detection on architectural glass panels using deep learning approach

刮擦 卷积神经网络 分割 人工智能 深度学习 计算机科学 过程(计算) 材料科学 人工神经网络 计算机视觉 复合材料 操作系统
作者
Zhufeng Pan,Jian Yang,Xing-er Wang,Feiliang Wang,Iftikhar Azim,Chenyu Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:282: 122717-122717 被引量:36
标识
DOI:10.1016/j.conbuildmat.2021.122717
摘要

Abstract As a transparent and traditional building material, glass products such as glass facade are vital components of buildings. However, the surface scratches generated in the manufacturing process or emerging in the service stage such as windborne debris impacts may lead to remarkable strength degradation of glass material. In order to assess the fracture possibility of glass components, the size and number of scratches should be monitored during their lifecycle. Automatic scratch detection of architectural glass therefore remains a necessary task for civil engineers. A pixel-level instance segmentation model using Mask and region-based convolutional neural network (Mask R-CNN) was proposed for scratches detection on transparent glass surface. Images with scratches were firstly collected by a tailor-made automated microscopic camera scanning system to build the training and validation dataset. Test results demonstrate that the trained network is satisfactory, achieving a mean average precision of 96.5% with low missing and false rate under background interference. A comparison between the proposed model and another segmentation method YOLACT indicates that the proposed model has better performance in both detection and segmentation accuracy. The proposed deep learning-based approach can better support the development of non-contact defect assessment techniques for transparent building materials such as glass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传统的斓完成签到,获得积分10
刚刚
1秒前
YNN完成签到,获得积分20
1秒前
1秒前
长情琦发布了新的文献求助10
1秒前
zl完成签到 ,获得积分10
1秒前
wucl1990发布了新的文献求助10
2秒前
厄尔尼诺完成签到,获得积分10
2秒前
2秒前
dingyuting完成签到,获得积分10
2秒前
仁爱的寻凝完成签到,获得积分10
2秒前
舒适的天奇完成签到 ,获得积分10
3秒前
科研通AI6应助lilin采纳,获得10
4秒前
4秒前
4秒前
落寞白曼完成签到,获得积分10
5秒前
专注的水壶完成签到 ,获得积分10
5秒前
5秒前
asdf应助热米莱采纳,获得10
5秒前
Ava应助柚子采纳,获得10
5秒前
炖地瓜完成签到 ,获得积分10
5秒前
sunianjinshi完成签到,获得积分10
5秒前
5秒前
炙热鹏飞发布了新的文献求助30
6秒前
科目三应助zhen采纳,获得10
6秒前
小伙子完成签到,获得积分10
6秒前
元宝爱吃薯片完成签到,获得积分10
6秒前
凯旋预言完成签到,获得积分10
6秒前
chaosyw完成签到,获得积分10
6秒前
RJL发布了新的文献求助10
6秒前
拉长的靖雁完成签到,获得积分10
6秒前
川Q邓紫棋完成签到 ,获得积分10
7秒前
CipherSage应助亦v采纳,获得50
8秒前
CA完成签到,获得积分10
8秒前
Y1311完成签到,获得积分10
8秒前
怕孤独的幻竹完成签到,获得积分10
8秒前
葛航完成签到,获得积分10
8秒前
顺利的妖妖完成签到 ,获得积分10
8秒前
Ch完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510395
求助须知:如何正确求助?哪些是违规求助? 4605112
关于积分的说明 14492658
捐赠科研通 4540256
什么是DOI,文献DOI怎么找? 2487920
邀请新用户注册赠送积分活动 1470085
关于科研通互助平台的介绍 1442615