Bias‐reduced and separation‐proof conditional logistic regression with small or sparse data sets

统计 数学 置信区间 二进制数据 逻辑回归 标称水平 期望最大化算法 优势比 计量经济学 二进制数 最大似然 算术
作者
Georg Heinze,Rainer Puhr
出处
期刊:Statistics in Medicine [Wiley]
卷期号:29 (7-8): 770-777 被引量:123
标识
DOI:10.1002/sim.3794
摘要

Abstract Conditional logistic regression is used for the analysis of binary outcomes when subjects are stratified into several subsets, e.g. matched pairs or blocks. Log odds ratio estimates are usually found by maximizing the conditional likelihood. This approach eliminates all strata‐specific parameters by conditioning on the number of events within each stratum. However, in the analyses of both an animal experiment and a lung cancer case–control study, conditional maximum likelihood (CML) resulted in infinite odds ratio estimates and monotone likelihood. Estimation can be improved by using Cytel Inc.'s well‐known LogXact software, which provides a median unbiased estimate and exact or mid‐ p confidence intervals. Here, we suggest and outline point and interval estimation based on maximization of a penalized conditional likelihood in the spirit of Firth's ( Biometrika 1993; 80:27–38) bias correction method (CFL). We present comparative analyses of both studies, demonstrating some advantages of CFL over competitors. We report on a small‐sample simulation study where CFL log odds ratio estimates were almost unbiased, whereas LogXact estimates showed some bias and CML estimates exhibited serious bias. Confidence intervals and tests based on the penalized conditional likelihood had close‐to‐nominal coverage rates and yielded highest power among all methods compared, respectively. Therefore, we propose CFL as an attractive solution to the stratified analysis of binary data, irrespective of the occurrence of monotone likelihood. A SAS program implementing CFL is available at: http://www.muw.ac.at/msi/biometrie/programs . Copyright © 2010 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
舒适寒松发布了新的文献求助10
2秒前
Joy发布了新的文献求助10
2秒前
yangling0124发布了新的文献求助10
4秒前
刘梦瑶发布了新的文献求助10
4秒前
4秒前
Wcy发布了新的文献求助10
5秒前
中央戏精学院完成签到,获得积分10
5秒前
6秒前
孟123发布了新的文献求助10
6秒前
7秒前
款款发布了新的文献求助10
9秒前
孙文远发布了新的文献求助10
10秒前
10秒前
10秒前
共享精神应助Joy采纳,获得10
11秒前
12秒前
舒适寒松完成签到,获得积分10
13秒前
13秒前
14秒前
HAN关闭了HAN文献求助
15秒前
Ash完成签到 ,获得积分10
15秒前
玉玉鼠发布了新的文献求助10
15秒前
稳稳发布了新的文献求助10
15秒前
melody发布了新的文献求助10
16秒前
共享精神应助huaxuxu采纳,获得10
16秒前
白蒲桃完成签到,获得积分10
17秒前
靓仔要亮完成签到,获得积分20
18秒前
万能图书馆应助Zz采纳,获得10
18秒前
香香发布了新的文献求助10
18秒前
18秒前
18秒前
聪明盈完成签到,获得积分10
19秒前
易萧完成签到 ,获得积分10
20秒前
20秒前
lxy完成签到 ,获得积分10
21秒前
桐桐应助杨桃采纳,获得10
22秒前
23秒前
CodeCraft应助Bebeans采纳,获得10
24秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840235
求助须知:如何正确求助?哪些是违规求助? 3382393
关于积分的说明 10523553
捐赠科研通 3101930
什么是DOI,文献DOI怎么找? 1708499
邀请新用户注册赠送积分活动 822527
科研通“疑难数据库(出版商)”最低求助积分说明 773346