Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox

常绿 每年落叶的 优势(遗传学) 落叶松 生物 生态学 北方的 生态演替 物候学 温带落叶林 植物功能类型 生态系统 生物化学 基因
作者
Thomas J. Givnish
出处
期刊:Silva Fennica [Finnish Society of Forest Science]
卷期号:36 (3) 被引量:542
标识
DOI:10.14214/sf.535
摘要

Patterns in the dominance of evergreen vs. deciduous plants have long interested ecologists, biogeographers, and global modellers. But previous models to account for these patterns have significant weaknesses. Bottom-up, mechanistic models – based on physiology, competition, and natural selection – have often been non-quantitative or restricted to a small range of habitats, and almost all have ignored belowground costs and whole-plant integration. Top-down, ecosystem-based models have succeeded in quantitatively reproducing several patterns, but rely partly on empirically derived constants and thresholds that lack a mechanistic explanation. It is generally recognized that seasonal drought can favor deciduous leaves, and that infertile soils can favor long-lived evergreen leaves. But no model has yet explained three great paradoxes, involving dominance by 1) evergreens in highly seasonal, boreal forests, 2) deciduous larch in many nutrient-poor peatlands, and 3) evergreen leaf-exchangers in nutrient-poor subtropical forests, even though they shed their leaves just as frequently as deciduous species. This paper outlines a generalized optimality model to account for these and other patterns in leaf longevity and phenology, based on maximizing whole-plant carbon gain or height growth, and building on recent advances in our understanding of the quantitative relationships of leaf photosynthesis, nitrogen content, and mass per unit area to leaf life-span. Only a whole-plant approach can explain evergreen dominance under realistic ecological conditions, or account for the boreal paradox, the larch paradox, the leaf-exchanger paradox, and expected shifts in shade tolerance associated with leaf phenology. Poor soils favor evergreens not merely by increasing the costs of nutrient acquisition, but also by depressing the maximum rate of photosynthesis and thus the seasonal contrast in photosynthetic return between leaves adapted to favorable vs. unfavorable conditions. The dominance of evergreens in western North America beyond the coastal zone of mild winters and winter rainfall appears related to the unusually long photosynthetic season for evergreen vs. deciduous plants there. Future models for optimal leaf phenology must incorporate differences between evergreen and deciduous plants in allocation to photosynthetic vs. non-photosynthetic tissue, rooting depth, stem allometry, xylem anatomy, and exposure to herbivores and leaching, and analyze how these differences interact with the photosynthetic rate, transpiration, and nutrient demands of leaves with different life-spans to affect rates of height growth in specific microsites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助ym采纳,获得10
刚刚
Sunny完成签到 ,获得积分10
1秒前
后会无期完成签到,获得积分10
5秒前
zxz发布了新的文献求助10
5秒前
5秒前
香蕉静芙完成签到,获得积分10
6秒前
科目三应助TTT0530采纳,获得10
7秒前
自强不息完成签到,获得积分10
10秒前
云草完成签到,获得积分10
10秒前
11秒前
小小怪完成签到 ,获得积分10
11秒前
zhaozhao完成签到,获得积分10
11秒前
Akim应助感性的梦竹采纳,获得10
13秒前
15秒前
16秒前
17秒前
ED应助Aegean采纳,获得10
17秒前
夏虫语冰完成签到,获得积分10
19秒前
lishanner发布了新的文献求助10
20秒前
21秒前
21秒前
伊森完成签到,获得积分10
22秒前
zxz完成签到,获得积分10
23秒前
Snow完成签到 ,获得积分10
25秒前
lza发布了新的文献求助10
26秒前
lijiajun发布了新的文献求助20
26秒前
我在云端完成签到,获得积分10
28秒前
Jessekwok发布了新的文献求助10
28秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
29秒前
小二郎应助黎哈哈哈采纳,获得10
29秒前
乐乐应助云草采纳,获得30
30秒前
喵喵徐完成签到 ,获得积分10
31秒前
晓梦完成签到,获得积分10
31秒前
xiexuqin完成签到,获得积分10
32秒前
研友_LpvQlZ完成签到,获得积分10
33秒前
搜集达人应助负责的方盒采纳,获得10
33秒前
上的工人进场完成签到,获得积分10
34秒前
35秒前
姜姜发布了新的文献求助20
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123