Particle Swarm Optimization With an Aging Leader and Challengers

群体行为 粒子群优化 水准点(测量) 早熟收敛 计算机科学 多样性(政治) 机制(生物学) 功率(物理) 趋同(经济学) 人工智能 数学 群体智能 数学优化 机器学习 社会学 经济 地理 物理 哲学 大地测量学 认识论 量子力学 经济增长 人类学
作者
Wei–Neng Chen,Jun Zhang,Ying Lin,Ni Chen,Zhi‐Hui Zhan,Henry Shu-Hung Chung,Yun Li,Yuhui Shi
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:17 (2): 241-258 被引量:608
标识
DOI:10.1109/tevc.2011.2173577
摘要

In nature, almost every organism ages and has \na limited lifespan. Aging has been explored by biologists to \nbe an important mechanism for maintaining diversity. In a \nsocial animal colony, aging makes the old leader of the colony \nbecome weak, providing opportunities for the other individuals \nto challenge the leadership position. Inspired by this natural \nphenomenon, this paper transplants the aging mechanism to \nparticle swarm optimization (PSO) and proposes a PSO with an \naging leader and challengers (ALC-PSO). ALC-PSO is designed \nto overcome the problem of premature convergence without \nsignificantly impairing the fast-converging feature of PSO. It \nis characterized by assigning the leader of the swarm with a \ngrowing age and a lifespan, and allowing the other individuals \nto challenge the leadership when the leader becomes aged. The \nlifespan of the leader is adaptively tuned according to the \nleader’s leading power. If a leader shows strong leading power, \nit lives longer to attract the swarm toward better positions. \nOtherwise, if a leader fails to improve the swarm and gets old, \nnew particles emerge to challenge and claim the leadership, \nwhich brings in diversity. In this way, the concept “aging” \nin ALC-PSO actually serves as a challenging mechanism for \npromoting a suitable leader to lead the swarm. The algorithm \nis experimentally validated on 17 benchmark functions. Its high \nperformance is confirmed by comparing with eight popular PSO \nvariants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23发布了新的文献求助10
刚刚
2秒前
2秒前
万能图书馆应助光而不耀采纳,获得10
2秒前
Huibo完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
lulala完成签到,获得积分10
5秒前
5秒前
Catloaf发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
geoham发布了新的文献求助30
7秒前
8秒前
小晓完成签到,获得积分10
8秒前
8秒前
猪猪hero发布了新的文献求助10
9秒前
青烟发布了新的文献求助10
10秒前
Msure发布了新的文献求助10
10秒前
谢a完成签到,获得积分10
10秒前
安静代萱完成签到 ,获得积分10
10秒前
飞翔发布了新的文献求助10
11秒前
SciGPT应助仿生躯壳采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
炙热果汁发布了新的文献求助30
14秒前
15秒前
光而不耀发布了新的文献求助10
17秒前
勤恳寒安发布了新的文献求助10
17秒前
猪猪hero发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790