全基因组关联研究
插补(统计学)
荟萃分析
计算生物学
计算机科学
生物
基因型
遗传学
医学
缺少数据
机器学习
单核苷酸多态性
内科学
基因
作者
Reem Joukhadar,Hans D. Daetwyler
标识
DOI:10.1007/978-1-0716-2237-7_11
摘要
Growing genomic and phenotypic datasets require different groups around the world to collaborate and integrate these valuable resources to maximize their benefit and increase reference population sizes for genomic prediction and genome-wide association studies (GWAS). However, different studies use different genotyping techniques which requires a synchronizing step for the genotyped variants called "imputation" before combining them. Optimally, different GWAS datasets can be analysed within a meta-analysis, which recruits summary statistics instead of actual data. This chapter describes the general principles for genotypic imputation and meta-GWAS analysis with a description of study designs and command lines required for such analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI