Detection method of obstacles in the dangerous area of electric locomotive driving based on MSE-YOLOv4-Tiny

计算机科学 障碍物 磁道(磁盘驱动器) 特征(语言学) 棱锥(几何) 人工智能 转化(遗传学) 计算机视觉 数学 操作系统 法学 化学 哲学 几何学 基因 生物化学 语言学 政治学
作者
Wenshan Wang,Shuang Wang,Yongcun Guo,Yanqiu Zhao,Jiale Tong,Tun Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (11): 115403-115403 被引量:11
标识
DOI:10.1088/1361-6501/ac82db
摘要

Abstract Aiming at the problems of error warning, low detection efficiency and inability to meet the requirements of lightweight deployment in current track obstacle detection algorithms based on computer vision, a detection method of obstacles in the dangerous area of electric locomotive driving based on improved YOLOv4-Tiny (MSE-YOLOv4-Tiny) was proposed. An obstacle image dataset was constructed to provide a testing environment for various target detection algorithms. The method of perspective transformation, sliding window and least square cubic polynomial was used to fit the track line. By finding the area where the track was located and extending a certain distance to the outside of the track, the dangerous area of the electric locomotive running was obtained. A three-scale detection structure was formed by increasing the shallow detection scale in the detection layer, so as to improve the detection accuracy of the network for smaller targets, such as stones. An improved SKNet (ECA_SKNet) attention mechanism module was added to the output ends of the three scales of the backbone network, and the weight was reassigned to realize feature reconstruction, thus further improving the detection accuracy of the target. By adding the Spatial Pyramid Pooling module, the local and global features of the image were fused to improve the accuracy of localization and detection accuracy of the network. A comparative experiment was carried out on the dataset constructed in this paper. The experimental results show that the problem of false warnings caused by taking the target in the safe area as an obstacle can be effectively solved by dividing the danger area of electric locomotive driving. Compared with the original YOLOv4-Tiny algorithm, the MSE-YOLOv4-Tiny algorithm has a 3.80% increase in mean average precision while maintaining a higher detection speed and a smaller model memory. It has better detection performance and can be used for autonomous driving electric locomotive obstacle detection to provide technical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhouYW应助爱笑的南风采纳,获得10
刚刚
大个应助寻凝采纳,获得10
刚刚
刚刚
乐观小之完成签到,获得积分0
1秒前
1秒前
甜蜜的听荷完成签到,获得积分10
2秒前
胖萝卜完成签到,获得积分10
2秒前
2秒前
笨笨友桃完成签到,获得积分10
2秒前
3秒前
3秒前
Zwc完成签到,获得积分10
3秒前
小蘑菇发布了新的文献求助10
3秒前
4秒前
4秒前
ZNan发布了新的文献求助10
5秒前
立青发布了新的文献求助10
5秒前
5秒前
6秒前
hgl发布了新的文献求助20
7秒前
蓝调爱科研应助秋雁风采纳,获得10
7秒前
杨春末发布了新的文献求助10
7秒前
rr发布了新的文献求助10
7秒前
科研通AI2S应助晕云采纳,获得30
9秒前
10秒前
10秒前
10秒前
科研发布了新的文献求助10
11秒前
11秒前
所所应助00采纳,获得10
11秒前
坦率发布了新的文献求助10
12秒前
无限电话完成签到,获得积分10
12秒前
12秒前
害羞晋鹏完成签到,获得积分10
12秒前
zyzy完成签到,获得积分10
13秒前
13秒前
chenyyy完成签到,获得积分20
14秒前
烂漫百招完成签到,获得积分10
15秒前
拾一发布了新的文献求助10
15秒前
充电宝应助明理依云采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809853
求助须知:如何正确求助?哪些是违规求助? 3354451
关于积分的说明 10370403
捐赠科研通 3070817
什么是DOI,文献DOI怎么找? 1686530
邀请新用户注册赠送积分活动 810988
科研通“疑难数据库(出版商)”最低求助积分说明 766479