TLSCA-SVM Fault Diagnosis Optimization Method Based on Transfer Learning

支持向量机 计算机科学 分类器(UML) 模式识别(心理学) 断层(地质) 人工智能 滤波器(信号处理) 维数(图论) 数据挖掘 数学 计算机视觉 地质学 地震学 纯数学
作者
Aihua Zhang,Danlu Yu,Zhiqiang Zhang
出处
期刊:Processes [MDPI AG]
卷期号:10 (2): 362-362 被引量:27
标识
DOI:10.3390/pr10020362
摘要

In fault-diagnosis classification, a pressing issue is the lack of target-fault samples. Obtaining fault data requires a great amount of time, energy and financial resources. These factors affect the accuracy of diagnosis. To address this problem, a novel fault-diagnosis-classification optimization method, namely TLSCA-SVM, which combines the sine cosine algorithm and support vector machine (SCA-SVM) with transfer learning, is proposed here. Considering the availability of fault data, this thesis uses the data generated by analog circuits from different faults for analysis. Firstly, the data signal is collected from different faults of the analog circuit, and then the characteristic data are extracted from the data signals by the wavelet packets. Secondly, to employ the principal component analysis (PCA) reduces the feature-value dimension. Lastly, as an auxiliary condition, the error-penalty item is added to the objective function of the SCA-SVM classifier to construct an innovative fault-diagnosis model namely TLSCA-SVM. Among them, the Sallen–Key bandpass filter circuit and the CSTV filter circuit are used to provide the data for horizontal- and vertical-contrast classification results. Comparing the SCA with the five optimization algorithms, it is concluded that the performance of SCA optimization parameters has certain advantages in the classification accuracy and speed. Additionally, to prove the superiority of the SCA-SVM classification algorithm, the five classification algorithms are compared with the SCA-SVM algorithm. Simulation results showed that the SCA-SVM classification has higher precision and a faster response time compared to the others. After adding the error penalty term to SCA-SVM, TLSCA-SVM requires fewer fault samples to process fault diagnosis. Ultimately, the method which is proposed could not only perform fault diagnosis effectively and quickly, but also could run effectively to achieve the effect of transfer learning in the case of less failure data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助虚拟的水壶采纳,获得10
1秒前
1秒前
文艺的冬卉完成签到,获得积分20
2秒前
Emma_Lee完成签到,获得积分20
3秒前
sam完成签到,获得积分10
3秒前
Hmz发布了新的文献求助10
3秒前
朴素羊完成签到 ,获得积分10
4秒前
JamesPei应助赵灵枫采纳,获得10
4秒前
q_q_l完成签到,获得积分10
4秒前
秦pale发布了新的文献求助30
6秒前
研友_Lmy3XL发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
BowieHuang应助alex采纳,获得10
7秒前
7秒前
7秒前
8秒前
个性的紫菜应助Li采纳,获得10
8秒前
大大完成签到,获得积分10
8秒前
满_1999发布了新的文献求助10
9秒前
奋斗的大曼完成签到 ,获得积分10
11秒前
11秒前
11秒前
倒逆之蝶应助简单的如松采纳,获得10
11秒前
科研通AI6应助简单的如松采纳,获得100
11秒前
12秒前
平贝花应助帅气谷丝采纳,获得10
12秒前
13秒前
香蕉觅云应助lawang采纳,获得10
13秒前
Jasper应助lawang采纳,获得10
13秒前
大模型应助lawang采纳,获得10
13秒前
领导范儿应助lawang采纳,获得10
13秒前
13秒前
14秒前
FashionBoy应助Haliky采纳,获得10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524