Identification of metabolomics-based prognostic prediction models for ICU septic patients

败血症 医学 感染性休克 内科学 沙发评分 接收机工作特性 逻辑回归 胃肠病学
作者
Xianfei Ding,Ran Tong,Heng Song,Guiying Sun,Dong Wang,Huoyan Liang,Junyi Sun,Yuqing Cui,Xiaojuan Zhang,Shaohua Liu,Ming Cheng,Tongwen Sun
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:108: 108841-108841 被引量:10
标识
DOI:10.1016/j.intimp.2022.108841
摘要

Sepsis-related global mortality remains unacceptably high in intensive care units. Identifying the various molecular processes between survival and death in septic patients may assist in better treatment. Accurate prognostic evaluation of sepsis is an essentially unmet need. This study analyzed the metabolite changes in plasma between healthy controls and septic patients, as well as between survival and dead septic patients using liquid chromatography/mass spectrometry. Univariate and multivariate analyses were applied to identify differential metabolites. The differential metabolites and clinical indicators within 24 h after sepsis diagnosis were run through multivariate logistic regression models to determine the 28-day, hospital, and 90-day septic mortality prediction models. The results suggested markedly changed amino acids metabolism in septic patients compared to healthy controls; 10, 4, and 22 primary differential metabolites related to amino acid and fatty acid metabolisms were identified in the survival and death groups at 28-day, hospital, and 90-day, respectively. Further, we found that model 1 (indoleacetic acid, 3-methylene-indolenine, heart rate, respiratory support, and application of pressure drugs), model 2 (lymphocyte count, alkaline phosphatase, SOFA, and L-alpha-amino-1H-pyrrole-1-hexanoic acid), and model 3 (dopamine, delta-12-prostaglandin J2, heart rate, respiratory support, and application of pressure drugs) could predict 28-day, hospital, and 90-day mortality of sepsis with a sensitivity of 75.51%, 73.58%, and 83.33%, specificity of 78.72%, 72.09%, and 78.57%, and the area under the receiver operating characteristic curve of 0.881, 0.830, 0.886, respectively. Thus, this research presents three multiple-biomarker-based prognostic models for 28-day, hospital, and 90-day mortality septic patients and could be used to guide sepsis treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
金海涵应助Mr.Latitude采纳,获得10
刚刚
小马甲应助抽象的脆脆采纳,获得10
2秒前
2秒前
2秒前
3秒前
大辉完成签到 ,获得积分10
5秒前
忧虑的火龙果完成签到,获得积分10
6秒前
牛乘风发布了新的文献求助10
6秒前
wanci应助小马的可爱老婆采纳,获得10
6秒前
情怀应助无辜秋珊采纳,获得10
7秒前
7秒前
堀川美嘉kk完成签到,获得积分10
8秒前
doul2023发布了新的文献求助10
8秒前
8秒前
RRhhh完成签到,获得积分10
9秒前
友好的代丝完成签到,获得积分20
9秒前
9秒前
丘比特应助盒子采纳,获得10
9秒前
9秒前
shallow发布了新的文献求助10
9秒前
10秒前
11秒前
顾矜应助han采纳,获得10
11秒前
xy发布了新的文献求助10
11秒前
震动的觅露完成签到,获得积分10
12秒前
12秒前
crucible发布了新的文献求助200
13秒前
可爱的函函应助小晶豆采纳,获得10
13秒前
13秒前
jdjakdjaslk发布了新的文献求助10
14秒前
qq发布了新的文献求助10
15秒前
ZL发布了新的文献求助10
15秒前
Zpeao发布了新的文献求助10
15秒前
牛乘风完成签到,获得积分10
16秒前
扶桑发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835479
求助须知:如何正确求助?哪些是违规求助? 3377803
关于积分的说明 10500774
捐赠科研通 3097386
什么是DOI,文献DOI怎么找? 1705784
邀请新用户注册赠送积分活动 820705
科研通“疑难数据库(出版商)”最低求助积分说明 772219