Quantitative Colorimetric Detection of Dissolved Ammonia Using Polydiacetylene Sensors Enabled by Machine Learning Classifiers

肉眼 RGB颜色模型 检出限 人工智能 化学 每个符号的零件数 计算机科学 材料科学 机器学习 色谱法 有机化学
作者
Papaorn Siribunbandal,Yong‐Hoon Kim,Tanakorn Osotchan,Zhigang Zhu,Rawat Jaisutti
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (22): 18714-18721 被引量:11
标识
DOI:10.1021/acsomega.2c01419
摘要

Easy-to-use and on-site detection of dissolved ammonia are essential for managing aquatic ecosystems and aquaculture products since low levels of ammonia can cause serious health risks and harm aquatic life. This work demonstrates quantitative naked eye detection of dissolved ammonia based on polydiacetylene (PDA) sensors with machine learning classifiers. PDA vesicles were assembled from diacetylene monomers through a facile green chemical synthesis which exhibited a blue-to-red color transition upon exposure to dissolved ammonia and was detectable by the naked eye. The quantitative color change was studied by UV-vis spectroscopy, and it was found that the absorption peak at 640 nm gradually decreased, and the absorption peak at 540 nm increased with increasing ammonia concentration. The fabricated PDA sensor exhibited a detection limit of ammonia below 10 ppm with a response time of 20 min. Also, the PDA sensor could be stably operated for up to 60 days by storing in a refrigerator. Furthermore, the quantitative on-site monitoring of dissolved ammonia was investigated using colorimetric images with machine learning classifiers. Using a support vector machine for the machine learning model, the classification of ammonia concentration was possible with a high accuracy of 100 and 95.1% using color RGB images captured by a scanner and a smartphone, respectively. These results indicate that using the developed PDA sensor, a simple naked eye detection for dissolved ammonia is possible with higher accuracy and on-site detection enabled by the smartphone and machine learning processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
PN_Allen完成签到 ,获得积分10
1秒前
2秒前
2秒前
Nancy发布了新的文献求助10
8秒前
一方通行完成签到,获得积分10
10秒前
12秒前
13秒前
dhua完成签到,获得积分20
13秒前
qiaoshan_Jason完成签到,获得积分10
14秒前
Raymond发布了新的文献求助10
14秒前
14秒前
FOX完成签到,获得积分10
18秒前
苹果果汁发布了新的文献求助10
18秒前
电击小子发布了新的文献求助10
18秒前
lyw完成签到 ,获得积分10
19秒前
两袖清风完成签到 ,获得积分10
19秒前
甜美无剑完成签到,获得积分10
19秒前
火星上以柳完成签到,获得积分10
20秒前
王禹涵完成签到 ,获得积分10
21秒前
ding完成签到,获得积分20
24秒前
电击小子完成签到,获得积分10
26秒前
28秒前
xx完成签到 ,获得积分20
29秒前
zhuzhu发布了新的文献求助10
33秒前
大模型应助苹果果汁采纳,获得10
34秒前
NexusExplorer应助Steven采纳,获得10
35秒前
科研通AI2S应助woxin采纳,获得10
35秒前
35秒前
科研通AI5应助七喜采纳,获得10
37秒前
CipherSage应助kai采纳,获得10
38秒前
dadad发布了新的文献求助10
39秒前
Wtony完成签到 ,获得积分10
39秒前
小猪吹风完成签到 ,获得积分10
42秒前
44秒前
FashionBoy应助秋言采纳,获得10
44秒前
火星上的飞兰完成签到,获得积分10
45秒前
耶路生完成签到,获得积分10
48秒前
Shu发布了新的文献求助10
48秒前
核动力咕咕姬完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401