Algorithms of causal inference for the analysis of effective connectivity among brain regions

因果推理 因果关系(物理学) 推论 计算机科学 因果模型 格兰杰因果关系 图形模型 代表(政治) 因果结构 人工智能 因果关系 机器学习 人工神经网络 潜变量 理论计算机科学 算法 计量经济学 数学 统计 量子力学 政治 物理 法学 政治学
作者
Daniel Chicharro,Stefano Panzeri
出处
期刊:Frontiers in Neuroinformatics [Frontiers Media SA]
卷期号:8: 64-64 被引量:39
标识
DOI:10.3389/fninf.2014.00064
摘要

In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl's causality, algorithms of inductive causation (IC and IC(*)) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
嘿嘿应助榴莲麦旋风采纳,获得10
2秒前
嘿嘿应助榴莲麦旋风采纳,获得10
2秒前
Enns完成签到 ,获得积分10
3秒前
轻松书本发布了新的文献求助10
3秒前
4秒前
wang完成签到,获得积分20
5秒前
可爱多发布了新的文献求助30
5秒前
ylh发布了新的文献求助10
5秒前
qiqi关注了科研通微信公众号
6秒前
无极微光应助科研通管家采纳,获得20
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
xzccc发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
西因应助科研通管家采纳,获得10
7秒前
yun应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
orixero应助科研通管家采纳,获得10
7秒前
西因应助科研通管家采纳,获得10
7秒前
spc68应助科研通管家采纳,获得10
7秒前
8秒前
叁零发布了新的文献求助10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
9秒前
zho应助科研通管家采纳,获得10
9秒前
Cmqq应助科研通管家采纳,获得10
9秒前
blackddl应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
泡芙应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
西因应助科研通管家采纳,获得10
9秒前
blackddl应助科研通管家采纳,获得10
9秒前
blackddl应助科研通管家采纳,获得10
9秒前
dy完成签到 ,获得积分10
9秒前
blackddl应助科研通管家采纳,获得10
9秒前
西因应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605427
求助须知:如何正确求助?哪些是违规求助? 4689972
关于积分的说明 14861912
捐赠科研通 4701319
什么是DOI,文献DOI怎么找? 2542055
邀请新用户注册赠送积分活动 1507720
关于科研通互助平台的介绍 1472089