已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast screening of lithium-ion batteries for second use with pack-level testing and machine learning

电池组 计算机科学 一致性(知识库) 适应性 电池(电) 可靠性工程 荷电状态 机器学习 人工智能 工程类 功率(物理) 生态学 量子力学 生物 物理
作者
Sijia Yang,Caiping Zhang,Jiuchun Jiang,Weige Zhang,Haoze Chen,Yan Jiang,Dirk Uwe Sauer,Weihan Li
出处
期刊:eTransportation [Elsevier BV]
卷期号:17: 100255-100255 被引量:17
标识
DOI:10.1016/j.etran.2023.100255
摘要

Fast and accurate screening of retired lithium-ion batteries is critical to an efficient and reliable second use with improved performance consistency, contributing to the sustainability of renewable energy sources. However, time-consuming testing, representative criteria extraction, and large module-to-module inconsistencies at the end of first life all pose great challenges for fast screening. This paper proposes a fast screening approach with pack-level testing and machine learning to evaluate and classify module-level aging, where disassembly of the battery pack and individual testing of modules are not required. Dynamic characteristic-based criteria are designed to extract the comprehensive performance of the retired modules, making the approach applicable for battery packs with module state-of-charge inconsistencies up to 30%. Adaptive affinity propagation clustering is utilized to classify the modules and further accelerate the screening progress. The proposed approach is implemented and validated by conducting pack-level and module-level experiments with a retired battery pack consisting of 95 modules connected in series. The screening time is reduced by at least 50% compared with approaches that require module-level testing. Reasonable static performance consistency and better dynamic performance consistency, as well as higher screening stability, are achieved, with average overall performance improvements of 18.94%, 4.83% and 34.41% compared with the three benchmarks, respectively. Its adaptability to a larger current rate shows promise for large-scale applications in second-use screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Superg发布了新的文献求助30
1秒前
熊仔仔熊完成签到 ,获得积分10
2秒前
2秒前
mavissss完成签到 ,获得积分10
3秒前
桃桃完成签到,获得积分20
6秒前
丘比特应助iu1392采纳,获得10
6秒前
azuzuzu完成签到,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
oboy应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
goodgay133发布了新的文献求助10
8秒前
桃桃发布了新的文献求助10
10秒前
乐乐应助liuheqian采纳,获得10
11秒前
kotea完成签到,获得积分10
12秒前
lstj6675完成签到,获得积分10
13秒前
wab完成签到,获得积分0
15秒前
18秒前
简单的湘关注了科研通微信公众号
19秒前
机智的友容完成签到,获得积分10
20秒前
22秒前
juziyaya发布了新的文献求助10
22秒前
奋斗的雅柔完成签到 ,获得积分10
23秒前
29秒前
AnlTee完成签到 ,获得积分10
31秒前
初七123完成签到 ,获得积分10
32秒前
33秒前
34秒前
wdewdfe完成签到 ,获得积分10
38秒前
简单的湘发布了新的文献求助10
40秒前
iu1392完成签到,获得积分10
40秒前
华仔应助火星仙人掌采纳,获得10
40秒前
goodgay133完成签到,获得积分10
40秒前
40秒前
刘五十七完成签到 ,获得积分10
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295