Graphene-Based Glucose Sensors with an Attomolar Limit of Detection

化学 检出限 极限(数学) 石墨烯 纳米技术 生化工程 色谱法 数学 工程类 数学分析 材料科学
作者
Vicente Lopes,Tiago Abreu,Mafalda Abrantes,Siva Sankar Nemala,Francesco De Boni,Mirko Prato,Pedro Alpuim,Andrea Capasso
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (15): 13059-13070 被引量:9
标识
DOI:10.1021/jacs.5c03552
摘要

Diabetes mellitus, a prevalent metabolic disorder affecting hundreds of millions of people worldwide, demands continuous glucose monitoring for effective management. Current blood glucose monitoring methods, such as commercial glucometers, are accurate but are often perceived as uncomfortable. Motivated by the need for noninvasive, ultrasensitive alternatives, our study presents electrolyte-gated graphene field-effect transistors functionalized with glucose oxidase. We developed an optimized fabrication process that integrates a 32-transistor matrix within a miniaturized 1000 μm2 footprint, ensuring high device uniformity while enabling detection in 40 μL analyte volume. A comprehensive suite of techniques─including Raman spectroscopy, X-ray photoelectron spectroscopy, and water contact angle measurements─reveals the stepwise evolution of graphene chemistry and surface properties leading to the controlled immobilization of glucose oxidase. Our findings demonstrate p-type doping and tensile strain in the graphene channel across the nanomolar-millimolar glucose concentration range. The enzyme-catalyzed oxidation of glucose produces hydrogen peroxide in close proximity to the graphene channel, inducing a systematic shift in the Dirac point voltage toward more positive values. Under these conditions, the biosensor achieves an attomolar limit of detection and a sensitivity of 10.6 mV/decade, outperforming previously reported glucose sensors. Selectivity tests against common interferents such as lactate and ascorbic acid, as well as validation in artificial and human tears, demonstrate its robustness for real-world applications. Altogether, these findings position the electrolyte-gated graphene field-effect transistor as a transformative, noninvasive glucose-sensing platform, paving the way for next-generation continuous monitoring devices, including wearable formats for real-time, user-friendly diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
casaboy完成签到,获得积分10
1秒前
1秒前
科研通AI6应助二小采纳,获得10
2秒前
悦耳的灵完成签到 ,获得积分10
2秒前
LaTeXer应助dyfsj采纳,获得50
2秒前
安详的大象完成签到,获得积分10
3秒前
YESKY完成签到,获得积分10
4秒前
测试版发布了新的文献求助10
4秒前
5秒前
SciGPT应助沉默的钵钵鸡采纳,获得10
6秒前
小xy发布了新的文献求助10
7秒前
心灵美的幼蓉完成签到,获得积分10
7秒前
7秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
sevenhill应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
sevenhill应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
王富臻完成签到,获得积分10
9秒前
9秒前
9秒前
香蕉觅云应助Zz采纳,获得10
10秒前
10秒前
10秒前
怕孤独的凝海完成签到,获得积分10
10秒前
11秒前
onessscan完成签到,获得积分10
11秒前
852应助xicifish采纳,获得30
12秒前
王富臻发布了新的文献求助10
12秒前
12秒前
潇涯发布了新的文献求助10
12秒前
KSung发布了新的文献求助10
12秒前
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445854
求助须知:如何正确求助?哪些是违规求助? 4554996
关于积分的说明 14249675
捐赠科研通 4477381
什么是DOI,文献DOI怎么找? 2453261
邀请新用户注册赠送积分活动 1444017
关于科研通互助平台的介绍 1420008