清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fast-DDPM: Fast Denoising Diffusion Probabilistic Models for Medical Image-to-Image Generation

计算机科学 概率逻辑 图像去噪 图像(数学) 人工智能 计算机视觉 医学影像学 图像处理 降噪 扩散 模式识别(心理学) 算法 物理 热力学
作者
Hongxu Jiang,Muhammad Imran,Teng Zhang,Yuyin Zhou,Muxuan Liang,Kuang Gong,Wei Shao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (10): 7326-7335 被引量:19
标识
DOI:10.1109/jbhi.2025.3565183
摘要

Denoising diffusion probabilistic models (DDPMs) have achieved unprecedented success in computer vision. However, they remain underutilized in medical imaging, a field crucial for disease diagnosis and treatment planning. This is primarily due to the high computational cost associated with the use of large number of time steps (e.g., 1,000) in diffusion processes. Training a diffusion model on medical images typically takes days to weeks, while sampling each image volume takes minutes to hours. To address this challenge, we introduce Fast-DDPM, a simple yet effective approach capable of simultaneously improving training speed, sampling speed, and generation quality. Unlike DDPM, which trains the image denoiser across 1,000 time steps, Fast-DDPM trains and samples using only 10 time steps. The key to our method lies in aligning the training and sampling procedures to optimize time-step utilization. Specifically, we introduced two efficient noise schedulers with 10 time steps: one with uniform time step sampling and another with non-uniform sampling. We evaluated Fast-DDPM across three medical image-to-image generation tasks: multi-image super-resolution, image denoising, and image-to-image translation. Fast-DDPM outperformed DDPM and current state-of-the-art methods based on convolutional networks and generative adversarial networks in all tasks. Additionally, Fast-DDPM reduced the training time to 0.2× and the sampling time to 0.01× compared to DDPM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助银鱼在游采纳,获得10
6秒前
hellokitty完成签到,获得积分10
7秒前
一颗酒窝完成签到 ,获得积分10
22秒前
zhangjw完成签到 ,获得积分0
25秒前
28秒前
韧迹完成签到 ,获得积分0
42秒前
量子星尘发布了新的文献求助10
47秒前
kean1943完成签到,获得积分10
57秒前
王波完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
盈盈发布了新的文献求助10
1分钟前
林克完成签到,获得积分10
1分钟前
呆萌冰彤完成签到 ,获得积分10
1分钟前
1分钟前
银鱼在游发布了新的文献求助10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
鲤鱼山人完成签到 ,获得积分10
1分钟前
sevenhill完成签到 ,获得积分0
1分钟前
Orange应助www采纳,获得10
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
2分钟前
wave8013完成签到 ,获得积分10
2分钟前
2分钟前
两个轮完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
英俊的铭应助ysss0831采纳,获得10
2分钟前
红火完成签到 ,获得积分10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
herpes完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
4分钟前
gmc完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Yuki完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349