Potential diagnostic markers and therapeutic targets for rheumatoid arthritis with comorbid depression based on bioinformatics analysis

类风湿性关节炎 重性抑郁障碍 基因 免疫系统 疾病 医学 计算生物学 生物信息学 免疫学 生物 遗传学 内科学 扁桃形结构
作者
Taotao Zhou,Jijia Sun,Li-dong Tang,Ying Yuan,Jianying Wang,Lei Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:14 被引量:12
标识
DOI:10.3389/fimmu.2023.1007624
摘要

Rheumatoid arthritis (RA) and depression are prevalent diseases that have a negative impact on the quality of life and place a significant economic burden on society. There is increasing evidence that the two diseases are closely related, which could make the disease outcomes worse. In this study, we aimed to identify diagnostic markers and analyzed the therapeutic potential of key genes.We assessed the differentially expressed genes (DEGs) specific for RA and Major depressive disorder (MDD) and used weighted gene co-expression network analysis (WGCNA) to identify co-expressed gene modules by obtaining the Gene expression profile data from Gene Expression Omnibus (GEO) database. By using the STRING database, a protein-protein interaction (PPI) network constructed and identified key genes. We also employed two types of machine learning techniques to derive diagnostic markers, which were assessed for their association with immune cells and potential therapeutic effects. Molecular docking and in vitro experiments were used to validate these analytical results.In total, 48 DEGs were identified in RA with comorbid MDD. The PPI network was combined with WGCNA to identify 26 key genes of RA with comorbid MDD. Machine learning-based methods indicated that RA combined with MDD is likely related to six diagnostic markers: AURKA, BTN3A2, CXCL10, ERAP2, MARCO, and PLA2G7. CXCL10 and MARCO are closely associated with diverse immune cells in RA. However, apart from PLA2G7, the expression levels of the other five genes were associated with the composition of the majority of immune cells in MDD. Molecular docking and in vitro studies have revealed that Aucubin (AU) exerts the therapeutic effect through the downregulation of CXCL10 and BTN3A2 gene expression in PC12 cells.Our study indicates that six diagnostic markers were the basis of the comorbidity mechanism of RA and MDD and may also be potential therapeutic targets. Further mechanistic studies of the pathogenesis and treatment of RA and MDD may be able to identify new targets using these shared pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yff采纳,获得10
2秒前
harri发布了新的文献求助10
2秒前
LUAN完成签到,获得积分10
6秒前
6秒前
白白白完成签到 ,获得积分10
8秒前
少吃一口完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助马瑞轩采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
殷勤的冥王星完成签到,获得积分10
11秒前
iNk应助欣喜的薯片采纳,获得20
12秒前
mjc完成签到 ,获得积分10
13秒前
科研通AI5应助小吉利采纳,获得30
14秒前
17秒前
拾柒发布了新的文献求助10
17秒前
李健应助梅子酒采纳,获得10
18秒前
JW完成签到,获得积分10
19秒前
所所应助渡星河采纳,获得10
19秒前
yangz发布了新的文献求助10
21秒前
21秒前
wang驳回了z12应助
21秒前
微笑的语芙完成签到,获得积分10
21秒前
23秒前
25秒前
HCXsir发布了新的文献求助10
26秒前
26秒前
LL发布了新的文献求助10
27秒前
28秒前
LLxiaolong发布了新的文献求助10
28秒前
29秒前
xinxinbaby发布了新的文献求助10
29秒前
希望天下0贩的0应助ling采纳,获得10
31秒前
研友_VZG7GZ应助YMM采纳,获得10
31秒前
Chen发布了新的文献求助10
31秒前
ltt完成签到,获得积分10
31秒前
梅子酒发布了新的文献求助10
32秒前
bkagyin应助无情的咖啡豆采纳,获得10
32秒前
顾瞻完成签到,获得积分10
32秒前
渡星河发布了新的文献求助10
33秒前
淡淡书白完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867305
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664362
捐赠科研通 3133875
什么是DOI,文献DOI怎么找? 1728505
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517