Estimation Of Leaf Area Index Using Radiative Transfer Process-guided Deep Learning

索引(排版) 过程(计算) 辐射传输 计算机科学 估计 遥感 叶面积指数 人工智能 环境科学 地质学 工程类 光学 物理 生物 操作系统 万维网 系统工程 生态学
作者
Zhouyang Liu,R. An,Yuting Qiao,Xiao Ma,Li Gao,Huaan Jin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/lgrs.2025.3528181
摘要

The leaf area index (LAI) serves as a significant vegetation growth indicator and plays an essential role in vegetation's feedback to climate change. Currently, artificial intelligence (e.g., deep learning) algorithms possess strong capabilities in constructing complex relationships and demonstrate successful integration with remote sensing for LAI inversion. Among these algorithms, the long short-term memory (LSTM) network excels in handling sequence data and features a multi-layer nonlinear structure that effectively captures complex nonlinear relationships between vegetation canopy reflectance and LAI. However, previous researches mainly relied on the strong learning capabilities of LSTM without incorporating essential remote sensing knowledge, which led to the lack of process information guidance in the training stage. Consequently, the performance of the trained model may be significantly limited. In this letter, we proposed a process-guided LSTM (LSTM-PG) deep learning method for LAI estimation by integrating radiative transfer models. The constrained training dataset was generated using the Soil-Leaf-Canopy (SLC) model. We separately utilized the loss function of mean squared error (MSE) and a process-guided loss function to generate LSTM models for LAI predictions from the simulated SLC datasets. Subsequently, we validated the accuracy of the LAI retrieval models using field measurements from the ImagineS project. Our results indicated that the proposed process-guided (PG) method (R² = 0.79, RMSE = 0.87) performed better than the LSTM-MSE estimations (R² = 0.79, RMSE = 0.93). Additionally, statistical analyses across various scenarios demonstrated significant advantages of the proposed method, and the LSTM-PG predictions showed good spatial consistency with the LAI reference maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐发布了新的文献求助10
刚刚
Tina_lai发布了新的文献求助10
1秒前
情怀应助ff采纳,获得10
2秒前
Jackson333发布了新的文献求助10
2秒前
小羊完成签到,获得积分10
2秒前
3秒前
yinyin发布了新的文献求助10
3秒前
014_250513关注了科研通微信公众号
4秒前
大个应助宇文宛菡采纳,获得10
5秒前
蓝岳洋完成签到 ,获得积分10
7秒前
执着静竹发布了新的文献求助10
7秒前
今后应助AmyDong采纳,获得10
7秒前
wangyy65完成签到 ,获得积分10
7秒前
9秒前
10秒前
Jackson333完成签到,获得积分10
11秒前
11秒前
汉堡包应助朝韵采纳,获得10
12秒前
13秒前
13秒前
向日葵发布了新的文献求助10
14秒前
yuming发布了新的文献求助20
14秒前
19秒前
白Guo发布了新的文献求助10
20秒前
yizhe发布了新的文献求助10
23秒前
无尘泪完成签到,获得积分10
23秒前
小歪完成签到,获得积分10
23秒前
24秒前
领导范儿应助RRui采纳,获得30
24秒前
25秒前
25秒前
外向土豆发布了新的文献求助20
25秒前
raye完成签到,获得积分10
27秒前
Orange应助落后醉易采纳,获得10
27秒前
Lucas应助汉域人采纳,获得30
28秒前
游游游发布了新的文献求助10
29秒前
田様应助小池同学采纳,获得10
29秒前
29秒前
Rae sremer发布了新的文献求助10
30秒前
宇文宛菡发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304