A Modified Capacitance Tomography Image Reconstruction Approach based on Iterative Shrinkage-Thresholding Algorithm Combined with Deep Networks

收缩率 电容层析成像 阈值 迭代重建 算法 计算机科学 断层摄影术 图像(数学) 电容 人工智能 计算机视觉 光学 物理 机器学习 电极 量子力学
作者
Yi Xu,Zhiyang Ma,Yi Li,Wuqiang Yang,Haigang Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (11): 115409-115409
标识
DOI:10.1088/1361-6501/ad6c71
摘要

Abstract Due to the ‘soft-field’ effect and the challenges posed by ill-posed and ill-conditioned inverse problems, it is difficult to obtain high quality images from an electrical capacitance tomography (ECT) system. To achieve both high-quality images and fast imaging speed with limited measurement data, an image reconstruction algorithm, which was initially proposed for compressive sensing, is adapted for ECT image reconstruction to optimize the ill-posed nature of its inverse problem. The proposed algorithm leverages deep learning networks inspired by the iterative shrinkage-thresholding algorithm (ISTA), thereby creating a model that is both mathematically interpretable and endowed with trainable parameters. Building upon this foundation, the conventional Landweber iteration is integrated with the ISTA-Net to refine the optimization process for ECT image reconstruction. In order to propose an effective model adapting to the actual multiphase flow characteristics and complex flow pattern changes, the training and test process is driven by a comprehensive dataset generated from dynamic simulations, rather than artificial samples of multiphase distributions. This numerical methodology simulates the dynamic measurement process of a virtual ECT sensor by coupling the gas–liquid two-phase flow field and the ECT electrostatic field. The results of the testing phase indicate that the proposed algorithm outperforms traditional ECT image reconstruction methods. Compared with the linear back projection algorithm, the average image error and gas fraction error have been reduced by 20.44% and 16.74%, respectively, while maintaining a computational speed comparable to that of the Landweber iteration. The accuracy of the new algorithm in reconstructing the two-phase interface and estimating the gas fraction has been validated by static experimental tests, showing its potential for practical application in online gas–liquid two-phase flow measurement scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明眸完成签到 ,获得积分10
2秒前
3秒前
胡楠完成签到,获得积分10
6秒前
001完成签到,获得积分10
11秒前
慕青应助ycd采纳,获得10
13秒前
郭星星完成签到,获得积分10
15秒前
msuyue完成签到,获得积分10
16秒前
xwx完成签到,获得积分10
16秒前
我想静静完成签到 ,获得积分10
17秒前
高贵的晓筠完成签到 ,获得积分10
21秒前
脸小呆呆发布了新的文献求助10
22秒前
22秒前
拾壹完成签到,获得积分10
23秒前
YifanWang应助一个小胖子采纳,获得10
23秒前
宋泽艺完成签到 ,获得积分10
23秒前
violetlishu完成签到 ,获得积分10
23秒前
24秒前
淡然智宸完成签到,获得积分10
24秒前
能干觅夏完成签到 ,获得积分10
27秒前
Echoheart完成签到,获得积分10
30秒前
xiaotudou95完成签到 ,获得积分10
30秒前
惜曦完成签到 ,获得积分10
32秒前
小纪完成签到 ,获得积分10
36秒前
纯情的无色完成签到 ,获得积分10
37秒前
一个小胖子完成签到,获得积分10
40秒前
陶醉的翠霜完成签到 ,获得积分10
41秒前
mawenting完成签到 ,获得积分10
42秒前
浩淼发布了新的文献求助10
46秒前
我真的要好好学习完成签到 ,获得积分10
46秒前
Wsyyy完成签到 ,获得积分10
50秒前
简简单单完成签到 ,获得积分10
50秒前
飘逸蘑菇完成签到 ,获得积分10
52秒前
墨墨完成签到 ,获得积分10
53秒前
墨墨完成签到 ,获得积分10
53秒前
54秒前
star完成签到,获得积分10
54秒前
七仔完成签到 ,获得积分10
55秒前
vikey完成签到 ,获得积分10
55秒前
57秒前
59秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301038
捐赠科研通 3057231
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626