Diagnostic accuracy of deep learning using speech samples in depression: a systematic review and meta-analysis

荟萃分析 萧条(经济学) 人工智能 计算机科学 深度学习 系统回顾 自然语言处理 梅德林 医学 内科学 政治学 法学 经济 宏观经济学
作者
Lidan Liu,Lu Liu,Hatem A Wafa,Florence Tydeman,Wanqing Xie,Yanzhong Wang
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (10): 2394-2404
标识
DOI:10.1093/jamia/ocae189
摘要

Abstract Objective This study aims to conduct a systematic review and meta-analysis of the diagnostic accuracy of deep learning (DL) using speech samples in depression. Materials and Methods This review included studies reporting diagnostic results of DL algorithms in depression using speech data, published from inception to January 31, 2024, on PubMed, Medline, Embase, PsycINFO, Scopus, IEEE, and Web of Science databases. Pooled accuracy, sensitivity, and specificity were obtained by random-effect models. The diagnostic Precision Study Quality Assessment Tool (QUADAS-2) was used to assess the risk of bias. Results A total of 25 studies met the inclusion criteria and 8 of them were used in the meta-analysis. The pooled estimates of accuracy, specificity, and sensitivity for depression detection models were 0.87 (95% CI, 0.81-0.93), 0.85 (95% CI, 0.78-0.91), and 0.82 (95% CI, 0.71-0.94), respectively. When stratified by model structure, the highest pooled diagnostic accuracy was 0.89 (95% CI, 0.81-0.97) in the handcrafted group. Discussion To our knowledge, our study is the first meta-analysis on the diagnostic performance of DL for depression detection from speech samples. All studies included in the meta-analysis used convolutional neural network (CNN) models, posing problems in deciphering the performance of other DL algorithms. The handcrafted model performed better than the end-to-end model in speech depression detection. Conclusions The application of DL in speech provided a useful tool for depression detection. CNN models with handcrafted acoustic features could help to improve the diagnostic performance. Protocol registration The study protocol was registered on PROSPERO (CRD42023423603).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwcz完成签到,获得积分10
1秒前
2秒前
李健应助鲤鱼平安采纳,获得10
3秒前
4秒前
MJGcrf完成签到,获得积分10
5秒前
5秒前
KongHN完成签到,获得积分10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
超级裁缝发布了新的文献求助10
10秒前
10秒前
平常傲白完成签到,获得积分10
12秒前
wwq发布了新的文献求助10
12秒前
浮游应助张静瑶采纳,获得10
14秒前
15秒前
16秒前
16秒前
16秒前
Owen应助土豪的如萱采纳,获得10
17秒前
coding完成签到,获得积分10
17秒前
lihuanmoon完成签到,获得积分10
18秒前
zhang发布了新的文献求助10
19秒前
Klay完成签到,获得积分10
20秒前
在水一方应助好运连连采纳,获得10
20秒前
1234567完成签到,获得积分10
21秒前
研友_LMN2rn完成签到,获得积分10
22秒前
22秒前
23秒前
万能图书馆应助龙超人采纳,获得10
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
懒惰的土拨鼠完成签到,获得积分10
25秒前
26秒前
bdsb发布了新的文献求助10
28秒前
巫马百招完成签到,获得积分10
28秒前
邢晓彤完成签到 ,获得积分10
29秒前
dynamoo发布了新的文献求助10
29秒前
浮游应助oleskarabach采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4648638
求助须知:如何正确求助?哪些是违规求助? 4037208
关于积分的说明 12487415
捐赠科研通 3727088
什么是DOI,文献DOI怎么找? 2057076
邀请新用户注册赠送积分活动 1088083
科研通“疑难数据库(出版商)”最低求助积分说明 969272