Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning with Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
源圈圈完成签到 ,获得积分10
2秒前
HUAN完成签到,获得积分10
2秒前
英俊白莲发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
可爱的函函应助忧郁月光采纳,获得10
7秒前
正直的小猫咪完成签到,获得积分10
8秒前
科研混子表锅完成签到,获得积分10
9秒前
粥粥完成签到 ,获得积分10
9秒前
朋克发布了新的文献求助10
9秒前
weitaiyy发布了新的文献求助10
11秒前
13秒前
藜藜藜在乎你完成签到 ,获得积分10
13秒前
14秒前
稳重岩完成签到 ,获得积分10
15秒前
遇上就这样吧应助小苏采纳,获得10
17秒前
科研通AI5应助小郭求学采纳,获得10
19秒前
TH1223完成签到,获得积分10
19秒前
完美世界应助英俊白莲采纳,获得10
19秒前
weitaiyy驳回了Owen应助
21秒前
pluto应助湖以采纳,获得10
21秒前
霖昭应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得30
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
Q0完成签到,获得积分10
23秒前
李爱国应助arya采纳,获得10
24秒前
TH1223发布了新的文献求助10
24秒前
安静的雁兰完成签到,获得积分10
25秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844575
求助须知:如何正确求助?哪些是违规求助? 3386955
关于积分的说明 10546964
捐赠科研通 3107464
什么是DOI,文献DOI怎么找? 1711842
邀请新用户注册赠送积分活动 824180
科研通“疑难数据库(出版商)”最低求助积分说明 774627