清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Recognition and Classification Approach for Motor Imagery Based on Spatio-Temporal Features

计算机科学 人工智能 模式识别(心理学) 特征提取 运动表象 计算机视觉 脑电图 脑-机接口 神经科学 生物
作者
Renjie Lv,Wenwen Chang,Guanghui Yan,Wenchao Nie,Lei Zheng,Bin Guo,Muhammad Tariq Sadiq
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 210-223 被引量:4
标识
DOI:10.1109/jbhi.2024.3464550
摘要

Motor imagery, as a paradigm of brain-computer interface, holds vast potential in the field of medical rehabilitation. Addressing the challenges posed by the non-stationarity and low signal-to-noise ratio of EEG signals, the effective extraction of features from motor imagery signals for accurate recognition stands as a key focus in motor imagery brain-computer interface technology. This paper proposes a motor imagery EEG signal classification model that combines functional brain networks with graph convolutional networks. First, functional brain networks are constructed using different brain functional connectivity metrics, and graph theory features are calculated to deeply analyze the characteristics of brain networks under different motor tasks. Then, the constructed functional brain networks are combined with graph convolutional networks for the classification and recognition of motor imagery tasks. The analysis based on brain functional connectivity reveals that the functional connectivity strength during the both fists task is significantly higher than that of other motor imagery tasks, and the functional connectivity strength during actual movement is generally superior to that of motor imagery tasks. In experiments conducted on the Physionet public dataset, the proposed model achieved a classification accuracy of 88.39% under multi-subject conditions, significantly outperforming traditional methods. Under single-subject conditions, the model effectively addressed the issue of individual variability, achieving an average classification accuracy of 99.31%. These results indicate that the proposed model not only exhibits excellent performance in the classification of motor imagery tasks but also provides new insights into the functional connectivity characteristics of different motor tasks and their corresponding brain regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wlscj应助科研通管家采纳,获得20
14秒前
苹果丹烟完成签到 ,获得积分10
20秒前
Rr完成签到,获得积分10
30秒前
xiaowangwang完成签到 ,获得积分10
34秒前
35秒前
Voyager发布了新的文献求助10
56秒前
票票完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助nbtzy采纳,获得20
1分钟前
1分钟前
1分钟前
nbtzy发布了新的文献求助20
1分钟前
Voyager完成签到,获得积分10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
毕嵩山发布了新的文献求助10
2分钟前
YY发布了新的文献求助10
2分钟前
完美世界应助nbtzy采纳,获得20
2分钟前
wlscj应助科研通管家采纳,获得20
2分钟前
2分钟前
心随以动完成签到 ,获得积分10
2分钟前
nbtzy发布了新的文献求助20
2分钟前
修辛完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
万能图书馆应助毕嵩山采纳,获得10
2分钟前
毕嵩山完成签到,获得积分20
3分钟前
3分钟前
隐形曼青应助保尔china采纳,获得10
3分钟前
施天问发布了新的文献求助10
3分钟前
mochalv123完成签到 ,获得积分10
3分钟前
施天问完成签到,获得积分10
3分钟前
songyu完成签到,获得积分10
3分钟前
小汪汪完成签到 ,获得积分10
3分钟前
可爱沛蓝完成签到 ,获得积分10
3分钟前
xue完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
CodeCraft应助universe_hhy采纳,获得10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5336010
求助须知:如何正确求助?哪些是违规求助? 4473632
关于积分的说明 13921847
捐赠科研通 4368045
什么是DOI,文献DOI怎么找? 2400011
邀请新用户注册赠送积分活动 1393088
关于科研通互助平台的介绍 1364604